Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The dual phase lag equation describing the temperature field in a 3D domain is considered. This equation supplemented by boundary and initial conditions is solved by means of the boundary element method using discretization in time, while at the same time the Dirichlet and Neumann boundary conditions are taken into account. Numerical realization of the BEM for the constant boundary elements and constant internal cells is presented. The example of computations concerns the temperature field distribution in a heated domain. The conclusions connected with the proper choice of time step and discretization of the domain considered are formulated.
Słowa kluczowe
Rocznik
Tom
Strony
89--95
Opis fizyczny
Bibliogr. 10 poz., rys.
Twórcy
autor
- Institute of Computational Mechanics and Engineering, Silesian University of Technology Gliwice, Poland
autor
- Institute of Computational Mechanics and Engineering, Silesian University of Technology Gliwice, Poland
Bibliografia
- [1] Tzou D.Y., Macro- to Microscale Heat Transfer: The Lagging Behaviour, Taylor and Francis, 1997.
- [2] Chen G., Borca-Tasciuc D., Yang R.G., Nanoscale heat transfer, Encyclopedia of Nanoscience and Nanotechnology 2004, X, 1-30.
- [3] Xu F., Seffen K.A., Lu T.J., Non-Fourier analysis of skin biothermomechanics, International Journal of Heat and Mass Transfer 2008, 51, 2237-2259.
- [4] Zhang Y., Generalized dual-phase lag bioheat equations based on nonequilibrium heat transfer in living biological tissues, International Journal of Heat and Mass Transfer 2009, 52, 4829--4834.
- [5] Majchrzak E., Mochnacki B., Suchy J.S., Finite difference model of short-pulse laser interactions with thin metal film, Computer Methods in Materials Science 2009, 9, 2, 316-322.
- [6] Majchrzak E., Turchan Ł., Analiza numeryczna temperatury i dawki termicznej w czasie zabiegu hipertermii, Modelowanie Inżynierskie, 41, Gliwice 2011, 237-242.
- [7] Dai W., Nassar R., A compact finite difference scheme for solving a one-dimensional heat transport equation at the microscale, Journal of Computational and Applied Mathematics 2001, 132, 431-441.
- [8] Majchrzak E., Metoda elementów brzegowych w przepływie ciepła, Wyd. Pol. Częstochowskiej, Częstochowa 2001.
- [9] Majchrzak E., Turchan Ł., Boundary element method for 3D Fourier-Kirchhoff heat transfer equation, Scientific Research of the Institute of Mathematics and Computer Science 2010, 1(9), 121-130.
- [10] Majchrzak E., Numerical solution of dual phase lag model of bioheat transfer using the general boundary element method, CMES: Computer Modeling in Engineering and Sciences 2010, 69, 1, 43-60.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92ed40e9-d516-4c37-a224-63483259142c