PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An analysis of cardiomyocytes’ electrophysiology in the presence of the hERG gene mutations

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mutations in the human ether-à-go-go-related gene are linked with cardiomyocyte repolarization impairment, which, in combination with other factors, can lead to life-threatening arrhythmias. The aim of the study was to demonstrate the effect of selected mutations associated with protein trafficking problems on the action potential of the ventricular cell. To perform the simulations, the O’Hara-Rudy dynamic model was used. The modification of membrane permeability to rapid delayed rectifier current was based on data obtained from in vitro studies with the human embryonic kidney (HEK293) cell line transfected with human genes: wild type and one of the seven mutations (F805C, G601S, D456Y, I31S, R823W, F640V, and A561V). Simulations were carried out for each mutation on epicardial, endocardial, and M-cells with RR interval values of 500, 750, 1000, and 1500 ms. A positive correlation between the APD90 length and the percentage of current reduction and between APD90 and RR interval lengths was observed.
Rocznik
Strony
135--140
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Pharmacy, Department of Social Pharmacy, Medical College, Jagiellonian University, Cracow, Poland
autor
  • Faculty of Pharmacy, Department of Social Pharmacy, Medical College, Jagiellonian University, Cracow, Poland
Bibliografia
  • 1. El Harchi A, Melgari D, Zhang YH, Zhang H, Hancox JC. Action potential clamp and pharmacology of the variant 1 short QT syndrome T618I hERG K(+) channel. PLoS One 2012;7:1-15.
  • 2. Spławski I, Shen J, Timothy KW, Lehmann MH, Priori S, Robinson JL, et al. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 2000;102:1178-85.
  • 3. Tester DJ, Will ML, Haglund CM, Ackerman MJ. Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm 2005:2:507-17.
  • 4. Kapa S, Tester D), Salisbury BA, Harris-Kerr C, Pungliya MS, Alders M, et al. Genetic testing for long-QT syndrome: distinguishing pathogenic mutations from benign variants. Circulation 2009:120:1752-60.
  • 5. Männikkö R, Overend G, Perrey C, Gavaghan CL, Valentin JP, Morten J, et at. Pharmacological and electrophysiological characterization of nine, single nucleotide polymorphisms of the hERG-encoded potassium channel. Br J Pharmacol 2010;159:102-14.
  • 6. Single Nucleotide Polymorphism Database. dbSNP short genetic variations. Available at: http://www.ncbi.nlm.nih.gov/projects/SNP. Accessed on 6, August 2013.
  • 7. Anderson CL, Deliste BP, Anson BD, Kilby JA, Will ML, Tester DJ, et al. Most LQT2 mutations reduce Kvll.l (hERG) current by a class 2 (trafficking-deficient) mechanism. Circulation 2006:113:365-73.
  • 8. Thomas D, Kiehn J, Katus HA, Karle CA. Defective protein trafficking in hERG-associated hereditary long QT syndrome (LQT2): molecular mechanisms and restoration of intracellular protein processing. Cardiovasc Res 2003:60:235-41.
  • 9. Etheridge SP, Compton SJ, Tristani-Firouzi M, Mason JW. A new oral therapy for long QT syndrome: long-term oral potassium improves repolarization in patients with HERG mutations. J Am Coll Cardiol 2003:42:1777-82.
  • 10. Fodstad H. Genetic and functional studies of severe ventricular arrhythmias, academic dissertation. Helsinki, Finland: University of Helsinki, 2005.
  • 11. Grilo LS, Schla'pfer J, Fellmann F, Abriel H. Patient with syncope and LQTS carrying a mutation in the PAS domain of the hERGl channel. Ann Noninvasive Electrocardiol 2011;16:213-8.
  • 12. Itoh T, Tanaka T, Nagai R, Kamiya T, Sawayama T, Nakayama T, et at. Genomic organization and mutational analysis of HERG a gene responsible for familial long QT syndrome. Hum Genet 1998:102:435-9.
  • 13. Tester DJ, Ackerman MJ. Sudden infant death syndrome: how significant are the cardiac channelopathies? Cardiovasc Res 2005:67:388-96.
  • 14. Fijorek K, Patel N, Klima t, Stolarz-Skrzypek K, Kawecka-Jaszcz K, Polak S. Age and gender dependent heart rate circadian model development and performance verification on the proarrhythmic drug case study. Theor Biol Med Model 2013; 10:1-11.
  • 15. Furlan R, Guzzetti S, Crivellaro W, Dassi S, Tinelli M, Baselli G et al. Continuous 24-hour assessment of the neural regulation of systemic arterial pressure and RR variabilities in ambulant subjects. Circulation 1990:81:537-47.
  • 16. Malpas SC, Purdie GL. Circadian variation of heart rate variability. Cardiovasc Res 1990;24:210-3.
  • 17. Tsuji H, Larson MG, Venditti FJ Jr, Manders ES, Evans JC, Feldman CL, et al. Impact of reduced heart rate variability on risk for cardiac events. The Framingham Heart Study. Circulation 1996;94:2850-5.
  • 18. O'HaraT, ViragL, Varro A, Rudy Y. Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Comput Biol 2011:7:1-29.
  • 19. Glukhov AV, Fedorov VV, Lou Q, Ravikumar VK, Kalish PW, Schuessler RB, et al. Transmural dispersion of repolarization in failing and nonfailing human ventricle. Circ Res 2010;106:981-91.
  • 20. Keating MT, Sanguinetti MC. Molecular and cellular mechanisms of cardiac arrhythmias. Cell 2001;104:569-80.
  • 21. O'Hara T, Rudy Y. Arrhythmia formation in subclinical ("silent") long QT syndrome requires multiple insults: quantitative mechanistic study using the KCNQ1 mutation Q357R as example. Heart Rhythm 2012:9:275-82.
  • 22. Polak S, Fijorek K, Glinka A, Wisniowska B, Mendyk A. Virtual population generator for human cardiomyocytes parameters: in silico drug cardiotoxicity assessment. Toxicol Mech Method: 2012;22:31-40.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92ea5d80-42d9-42fb-a891-e7d136b3c707
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.