Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Currently, handwritten character recognition (HCR) technology has become an interesting and immensely useful technology; it has been explored with impressive performance in many languages. However, few HCR systems have been proposed for the Amazigh (Berber) language. Furthermore, the validation of any Amazigh handwritten character-recognition system remains a major challenge due to the lack of availability of a robust Amazigh database. To address this problem, we first created two new data sets for Tifinagh and Amazigh Latin characters by extending the well-known EMNIST database with the Amazigh alphabet. Then, we proposed a handwritten character recognition system that is based on a deep convolutional neural network to validate the created data sets. The proposed convolutional neural network (CNN) has been trained and tested on our created data sets, the experimental tests showed that it achieves satisfactory results in terms of accuracy and recognition efficiency.
Wydawca
Czasopismo
Rocznik
Tom
Strony
225--241
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- Research Center for Amazigh Language and Culture, Algeria
autor
- Research Center for Amazigh Language and Culture, Algeria
Bibliografia
- [1] Abaynarh M., Elfadili H., Zenkouar K., Zenkouar L.: Neural Network Classifiers for Off-line Optical Handwritten Amazighe Character Recognition, International Journal of Computer Science and Network Security (IJCSNS), vol. 12(6), pp. 28–36, 2012.
- [2] Achab K.: The Tamazight (Berber) Language Profile, University of Ottawa, 2001.
- [3] Aharrane N., El Moutaouakil K., Satori K.: Recognition of handwritten Amazigh characters based on zoning methods and MLP, WSEAS Transactions on Computers, vol. 14(19), pp. 178–185, 2015.
- [4] AlKhateeb J.H.: A database for Arabic handwritten character recognition, Procedia Computer Science, vol. 65, pp. 556–561, 2015.
- [5] Amrouch M., Es-Saady Y., Rachidi A., El-Yassa M., Mammass D.: A Novel Feature Set for Recognition of Printed Amazigh Text using Maximum Deviation and HMM, International Journal of Computer Applications, vol. 44(12),pp. 23–30 2012.
- [6] Amrouch M., Es-Saady Y., Rachidi A., El Yassa M., Mammass D.: Printed amazigh character recognition by a hybrid approach based on Hidden Markov Models and the Hough transform. In: 2009 International Conference on Multimedia Computing and Systems, pp. 356–360, IEEE, 2009.
- [7] Amrouch M., Rachidi A., El Yassa M., Mammass D.: Handwritten amazigh character recognition based on hidden Markov models, ICGST-GVIP Journal, vol. 10(5), pp. 11–18, 2010.
- [8] Benaddy M., El Meslouhi O., Es-Saady Y., Kardouchi M.: Handwritten Tifinagh Characters Recognition Using Deep Convolutional Neural Networks, Sensing and Imaging, vol. 20, pp. 1–17, 2019.
- [9] Boufenar C., Kerboua A., Batouche M.: Investigation on deep learning for off-line handwritten Arabic character recognition, Cognitive Systems Research, vol. 50,pp. 180–195, 2018.
- [10] Chaudhuri A., Mandaviya K., Badelia P., Ghosh S.K.: Optical Character Recognition Systems for Latin Language. In: Optical Character Recognition Systemsfor Different Languages with Soft Computing, pp. 165–191, Springer, 2017.
- [11] Clanuwat T., Lamb A., Kitamoto A.: KuroNet: Pre-modern Japanese kuzushiji character recognition with deep learning. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 607–614, IEEE, 2019.
- [12] Cohen G., Afshar S., Tapson J., Van Schaik A.: EMNIST: Extending MNIST to handwritten letters. In: 2017 International Joint Conference on Neural Networks(IJCNN), pp. 2921–2926, IEEE, 2017.
- [13] Deng L.: The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best of the Web],IEEE Signal Processing Magazine, vol. 29(6),pp. 141–142, 2012.
- [14] El Gajoui K., Allah F.A., Oumsis M.: Diacritical Language OCR based on neural network: Case of Amazigh language, Procedia Computer Science, vol. 73,pp. 298–305, 2015.
- [15] El Gajoui K., Ataa Allah F.: Optical character recognition for multilingual documents: Amazigh-French. In: 2014 Second World Conference on Complex Systems(WCCS), pp. 84–89, 2014.
- [16] Es-Saady Y., Rachidi A., El Yassa M., Mammass D.: Amazigh handwrit-ten character recognition based on horizontal and vertical centerline of character, International Journal of Advanced Science and Technology, vol. 33(17),pp. 33–50, 2011.
- [17] Es-Saady Y., Rachidi A., El Yassa M., Mammass D.: AMHCD: A databasefor amazigh handwritten character recognition research, International Journal of Computer Applications, vol. 27(4), pp. 44–48, 2011.
- [18] Grother P., Hanaoka K.: NIST special database 19. Handprinted forms and characters, 2nd Edition, National Institute of Standards and Technology, Technical Report, vol. 13, 2016.
- [19] ISO/IEC JTC N2739R. De Normalisation, Organisation Internationale, 2004.
- [20] Kavitha B., Srimathi C.: Benchmarking on offline Handwritten Tamil Character Recognition using convolutional neural networks, Journal of King Saud University – Computer and Information Sciences, vol. 34, pp. 1183–1190, 2019.
- [21] Lawgali A., Angelova M., Bouridane A.: HACDB: Handwritten Arabic characters database for automatic character recognition. In: European Workshop on VisualInformation Processing (EUVIP), pp. 255–259, 2013.
- [22] Osborn D.:African languages in a digital age: Challenges and opportunities forindigenous language computing, IDRC, 2010.
- [23] Sadouk L., Gadi T., Essoufi E.H.: Handwritten tifinagh character recognition using deep learning architectures. In: IML’17: Proceedings of the 1st InternationalConference on Internet of Things and Machine Learning, pp. 1–11, 2017.
- [24] Wang D.H., Liu C.L., Yu J.L., Zhou X.D.: CASIA-OLHWDB1: A Database of Online Handwritten Chinese Characters. In: 2009 10th International Conferenceon Document Analysis and Recognition, pp. 1206–1210, 2009.
- [25] Yadav M., Purwar R.: Hindi handwritten character recognition using multipleclassifiers. In: 2017 7th International Conference on Cloud Computing, Data Science & Engineering – Confluence, pp. 149–154, 2017.
- [26] Yousaf A., Khan M.J., Imran M., Khurshid K.: Benchmark dataset for offline handwritten character recognition. In: 2017 13th International Conference on Emerging Technologies (ICET), pp. 1–5, 2017.
- [27] Zhang X.Y., Bengio Y., Liu C.L.: Online and offline handwritten chinese character recognition: A comprehensive study and new benchmark, Pattern Recognition,vol. 61, pp. 348–360, 2017.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92e5e5fc-cccd-4a13-9b29-2237d2f38228