PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some observations on the synthesis and electrolytic properties of (Ba1-xCax)(M0.9Y0.1)O-3, M = Ce, Zr-based samples modified with calcium

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the impact of partial substitution of calcium for barium in (Ba1-xCax)(M0.9Y0.1)O3, M = Ce, Zr on physicochemical properties of the powders and sintered samples was investigated. The powders, with various contents of calcium (x = 0, 0.02, 0.05, 0.1), were prepared by means of thermal decomposition of organometallic precursors containing EDTA. All of the BaCeO3-based powders synthesised at 1100 degrees C were monophasic with a rhombohedral structure, however, completely cubic BaZrO3-based solid solutions were obtained at 1200 degrees C. A study of the sinterability of BaZr0.9Y0.1O3 and BaCe0.9Y 0.1O3-based pellets was performed under non-isothermal conditions within a temperature range of 25 to 1200 degrees C. The partial substitution of barium for calcium in the (Ba1-xCax)(M0.9Y0.1)O-3, M = Ce, Zr solid solution improved the sinterability of the samples in comparison to the initial BaCe0.9Y 0.1O3 or BaZr0.9Y 0.1 O3. The relative density of calcium-modified BaCe0.9Y 0.1O3-based samples reached approximately 95 to 97 % after sintering at 1500 degrees C for 2 h in air. The same level of relative density was achieved after sintering calcium-modified BaZr0.9Y 0.1O3-at 1600 degrees C for 2 h. Analysis of the electrical conductivity from both series of investigated materials showed that the highest ionic conductivity, in air and wet 5 % H2 in Ar, was attained for the compositions of x = 0.02 to 0.05 (Ba1-xCax)(M0.9Y0.1)O3, M = Zr, Ce. The oxygen reduction reaction on the interface Pt vertical bar BaM0.9Y 0.1O3, M = Ce, Zr was investigated using Pt microelectrodes. Selected samples of (Ba1-xCax)(M0.9Y0.1)O3, M = Zr, Ce were tested as ceramic electrolytes in hydrogen-oxygen solid oxide fuel cells operating at temperatures of 700 to 850 degrees C.
Wydawca
Rocznik
Strony
101--114
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Fuels and Energy, al. Mickiewicza 30, 30-059 Cracow, Poland
autor
  • AGH University of Science and Technology, Faculty of Fuels and Energy, al. Mickiewicza 30, 30-059 Cracow, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059Cracow, Poland
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059Cracow, Poland
autor
  • AGH University of Science and Technology, Faculty of Fuels and Energy, al. Mickiewicza 30, 30-059 Cracow, Poland
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059Cracow, Poland
Bibliografia
  • 1. Iwahara H., Asakura Y., Katahira K., Tanaka M., Solid State Ionics, 168 (2004) 299.
  • 2. Tao Z., Zhu Z., Wang H., Liu W., J. Power Sources, 195 (2010) 3481.
  • 3. Carpanese M.P., Barbucci A., Canu G., Viviani M., Solid State Ionics, 269 (2015) 80.
  • 4. Sun W., Yan L., Shi Z., Zhu Z., Liu W., J. Power Sources, 195 (2010) 4727.
  • 5. Kumar R.V., J. Alloy. Compd., 408 (2006) 463.
  • 6. Ramirez-Rico J., Lopez-Robledo M.J., Arellano-Lopez A.R., Martinez Fernandez J., Sayir A., J. Eur. Ceram. Soc., 26 (2006) 3705.
  • 7. Gharbage B., Marques F.M.B., Frade J.R., J. Eur. Ceram. Soc., 16 (1996) 1149.
  • 8. Wang J.X., Li L.P., Campbell B.J., Lv Z., Ji Y., Xue Y.F., Sp W.H., Mater. Chem. Phys., 86 (2004) 150.
  • 9. Babu A.S., Bauri R., Int. J. Hydrogen Energ., 39 (2014) 14487.
  • 10. Kim J.H., Kang Y.M., Byun M.S., Hwang K.T., Thin Solid Films, 520 (2011) 1015.
  • 11. Han D., Nose Y., Shinoda K., Uda T., Solid State Ionics, 213 (2012) 2.
  • 12. Kim Y., GüR T.M., Kang S., Jung H.J., Sinclair R., Prinz F.B., Electrochem. Commun., 13 (2011) 403.
  • 13. Medvedev D., Lyagaeva J., Plaksin S., Demin A., Tsiakaras P., J. Power Sources, 273 (2015) 716.
  • 14. Fabbri E., D’Epifanio A., di Bartolomeo E., Licoccia S., Traversa E., Solid State Ionics, 179 (2008) 558.
  • 15. Fabbri E., Pergolesi D., D’Epifanio A., Dibartolomeo E., Balestrino G., Licoccia S., Traversa E., Energ. Environ. Sci., 3 (2008) 355.
  • 16. Bi L., Traversa E., Electrochem. Commun., 36 (2013) 42.
  • 17. Fabbri E., Bi L., Pergolesi D., Traversa E., Adv.Mater., 24 (2012) 195.
  • 18. Fabbri E., Bi L., Pergolesi D., Traversa E., RSCAdv., 1 (2011) 1183.
  • 19. Eglitis R., Solid State Ionics, 230 (2013) 43.
  • 20. Dudek M., Bućko M.M., J. Solid State Electr., 14 (2010) 565.
  • 21. Bućko M.M., Dudek M., J. Power Sources, 194 (2009) 25.
  • 22. Tomczyk P., Żurek S., Mosiałek M., J. Electroceram., 23 (2009) 25.
  • 23. Raźniak A., Tomczyk P., Mater. Sci.-Poland, 26 (2008) 195.
  • 24. Raźniak A., Dudek M., Tomczyk P., Catal. Today, 176 (2011) 41.
  • 25. Lis B., Dudek M., Tomczyk P., Przem. Chem., 93 (2014) 2042.
  • 26. Bućko M.M., Ceramics/Polish Ceramic Bulletin, 103 (2008) 187.
  • 27. Shannon R.D., Acta Crystallogra A, A32 (1976) 751.
  • 28. Takeuchi K., Loong C.K., Richardson J.W., Guan J., Dorris S.E., Balachandran U., Solid State Ionics, 138 (2000) 63.
  • 29. Sun Z.Q., Fabbri E., Bi L., Traversa E., J. Am.Ceram.Soc., 95 (2012) 627.
  • 30. Xu N., Zhao H., Zhou X, Wei W., Lu X., Ding W., Li F., Int. J. Hydrogen Energ, 35 (2010) 7295.
  • 31. Xu L., Wencong L., Chunrong P., Qiang S., Jin G., Comp. Mater. Sci., 46 (2009) 860.
  • 32. Hayashi H., Inaba H., Matsuyama M., Lan N.G., Dokiya M., Tagawa H., Solid State Ionics, 122 (1999) 1.
  • 33. Johnsson M., Lemmens P., Crystallography and Chemistry of Perovskites, in: Kronmuller H. (Eds.), Handbook of Magnetism and Advanced Magnetic Media, John Wiley & Sons, New York, 2006.
  • 34. Kjřlseth C., Fjeld H., Prytz Ř., Dahl P.I., Estournčs C., Haugsrud R., Norby T., Solid State Ionics, 181 (2010) 268.
  • 35. Yajima T., Iwahara H., Uchida H., Solid State Ionics, 47 (1991) 117.
  • 36. Tao S., Irvine J.T.S., J. Solid State Chem., 180 (2007) 3493.
  • 37. Princivalle A., Martin G., Viazzi C., Guizard C., Grunbaum N., Dessemond L., J. Power Sources, 196 (2011) 9238.
  • 38. Poetzsch D., Merkle R., Maier J., J.PowerSources, 242 (2013) 784.
  • 39. Park J.S., An J., Lee M.H, Prinz F.B., Lee W., J.Power Sources, 295 (2015) 74.
  • 40. Mosiałek M., Nowak P., Dudek M., Mordarski G., Electrochim. Acta, 120 (2014) 248.
  • 41. Nielsen J., Jacobsen T., Solid State Ionics, 178 (2008) 1769.
  • 42. Higuchi T., Tsukamoto T., Matsumoto H., Shimura T., Yashiro K., Kawada T., Mizusaki J J., Shin S., Hattori T., Solid State Ionics, 176 (2005) 2967.
  • 43. Ahmed I., Eriksson S.G., Ahlberg E., Knee C.S., Götlind H., Johansson L.G, Karlsson M., Matic A., Börjesson L., Solid State Ionics, 178 (2007) 515.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92e50a01-f2f7-49ee-acf8-149f1caaf440
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.