Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Collecting information on the flotation foam characteristics is important for controlling flotation production conditions. Foam images acquired during coal slurry flotation are affected by factors such as ambient lighting, contributing to uneven grayscale images with low brightness and contrast. Brightness enhancement of foam images is often required when using network models to extract feature information from the images. The paper proposes a foam image brightness enhancement algorithm based on a multiscale convolutional neural network. The method employs a skip connection structure based on a summation connection design based on logarithmic functions and introduces a loss function based on logarithmic transformation in the network. At the same time, branching networks of different complexity are designed in the network to further help alleviate the gradient vanishing problem. The experimental results show that when evaluating the quality of images after brightness enhancement of foam images and the public dataset MIT, the numerical results of using the proposed skip connection structure in the proposed network are overall better than using the resblock structure, and the proposed loss function is better than is better than using the L2 loss function. The proposed network greatly improves the visual effect of flotation foam images and lays the foundation for feature extraction of flotation foam images and intelligent flotation production.
Rocznik
Tom
Strony
art. no. 188277
Opis fizyczny
Bibliogr. 36 poz., fot., rys., tab.
Twórcy
autor
- School of Digtial and Intelligence Industry, Inner Mongolia University of Science &Technology, Baotou, China
autor
- School of Digtial and Intelligence Industry, Inner Mongolia University of Science &Technology, Baotou, China
autor
- Inner Mongolia Limin Coal Coke Co., Ltd., Ordos 016064, China
autor
- School of Mines and Coal, Inner Mongolia University of Science & Technology, Baotou, China
autor
- School of Mines and Coal, Inner Mongolia University of Science & Technology, Baotou, China
Bibliografia
- ZARIE, M., JAHEDSARAVANI, A., MASSINAEI, M., 2020. Flotation foam image classification using convolutional neural networks. Miner. Eng. 155, 106443.
- WEN, Z., ZHOU, C., PAN, J., NIE, T., JIA, R., YANG, F., 2021. Foam image feature engineering-based prediction method for concentrate ash content of coal flotation. Miner. Eng. 170, 107023.
- ALDRICH, C., AVELAR, E., LIU, X., 2022. Recent advances in flotation foam image analysis. Miner. Eng. 188, 107823.
- PAWLIK, M., 2022. Fundamentals of foam flotation. ChemTexts. 8, 1–40.
- CAO, W., WANG, R., FAN, M., FU, X., WANG, H., WANG, Y., 2022. A new foam image classification method based on the MRMR-SSGMM hybrid model for recognition of reagent dosage condition in the coal flotation process. Appl. Intell. (Dordr). 52, 732–752.
- ZHANG, H., TANG, Z., XIE, Y., GAO, X., CHEN, Q., 2019. A watershed segmentation algorithm based on an optimal marker for bubble size measurement. Measurement. 138, 182–193.
- JU, Y., WU, L., LI, M., XIAO, Q., WANG, H., 2022. A novel hybrid model for flow image segmentation and bubble pattern extraction. Measurement. 192, 110861.
- ZHANG, W., LIU, D., WANG, C., LIU, R., WANG, D., YU, L., WEN, S., 2022. An improved python-basedimage processing algorithm for flotation foam analysis, Minerals. 12, 1126.
- JOBSON, D. J., RAHMAN, Z. U. WOODELL, G. A., 1997. Properties and performance of a center/surround retinex. IEEE Trans. Image Process. 6, 451–462.
- PENG, D., ZHEN, T., LI, Z., 2023. A survey of research methods for low light image enhancement, Comput. Eng. Appl. 1–19.
- CAO, H., LIU, C., SHEN, X., LI, D., CHEN, Y., 2021. Low illumination image processing based on adaptive threshold and local Tone mapping. Adv. Laser Optoelectron. 58, 227–234.
- PANG, Z., LU, B., GU, Y., ZHENG, Y., ZHANG, M., 2021. Tone mapping algorithm for high dynamic range images based on cross-decomposition. Progr. Laser Optoelectron. 58, 296–303.
- ZHU, S., QIN, Y., ZHENG, Y., LU, B., TONE, A., 2022. Mapping algorithm for collaborative filtering of chroma and brightness. Liq. Cryst. Disp. 37, 77–85.
- HU, Z., CHEN, Q., ZHU, D., 2022. Underwater image enhancement based on color balance and multiscale fusion. Opt. Precis. Eng. 30, 2133–2146.
- XIAO, C., 2022. Detail enhancement method of pelvic floor ultrasound image based on histogram equalization interpolation. Autom. Instrum. 06, 261–264.
- ZHU, J., YANG, H., HE, W., WANG, W., SHA, Y., HUANG, X., XU, Z., 2022. Implementation of a histogram equalization algorithm based on image segmentation. Infrared Technol. 44, 587–592.
- GUO, Z., WANG, R., FU, X., WEI, K., WANG, Y., 2022. Method for extracting foam velocity of coal slime flotation based on image feature matching. J. Mine Autom. 48, 34–39.
- JIANG, X., LIU, J., WANG, L., LEI, Z., HU, M., 2023. Flotation condition recognition based on multi-scaleconvolutional neural network and LBP algorithm. J. Min. Sci. Technol. 8, 202–212.
- MA, L., MA, T., LIU, R., FAN, X., LUO, Z., 2022. Toward fast, flexible, and robust low-light image enhancement. in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5627–5636.
- FAN, C. M., LIU, T. J., LIU, K. H., 2022. Half wavelet attention on M-Net+ for low-light image enhancement. 2022 IEEE International Conference on Image Processing (ICIP). 3878–3882.
- GUO, X., HU, Q., 2023. Low-light image enhancement via breaking down the darkness. Int. J. Comput. Vis. 131, 48–66.
- NGUYEN, H., TRAN, D., NGUYEN, K., NGUYEN, R., 2023. PSENet: Progressive self-enhancement network for unsupervised extreme-light image enhancement. in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 1756–1765.
- WANG, J., LIANG, W., YANG, J., WANG, S., YANG, Z. X., 2023. An adaptive image enhancement approach for safety monitoring robot under insufficient illumination condition. Comput. Ind. 147, 103862.
- ZAMIR, S. W., ARORA, A., KHAN, S., HAYAT, M., KHAN, F. S., YANG, M. H., SHAO, L., 2020. Learning enriched features for real image restoration and enhancement. Computer vision–ECCV 2020, Proceedings, Part XXV 16: 16th European Conference, Glasgow, UK, August 23–28, 2020, Springer International Publishing. 492–511.
- HE, K., ZHANG, X., REN, S., SUN, J., 2016. Deep residual learning for image recognition. in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 770–778. https://doi.org/10.1109/CVPR.2016.90.
- XIE, S., GIRSHICK, R., DOLLÁR, P., TU, Z., HE, K., 2017. Aggregated residual transformations for deep neural networks. in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 5987–5995. https://doi.org/10.1109/CVPR.2017.634.
- HUANG, G., LIU, Z., VAN DER MAATEN, L., WEINBERGER, K. Q., 2017. Densely connected convolutional networks. in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2261–2269. https://doi.org/10.1109/CVPR.2017.243.
- SZEGEDY, C., LIU, W., JIA, Y., SERMANET, P., REED, S., ANGUELOV, D., ERHAN, D., VANHOUCKE, V., RABINOVICH, A., 2015. Going deeper with convolutions. in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1–9. https://doi.org/10.1109/CVPR.2015.7298594.
- IOFFE, S., CHRISTIAN, S., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. International Conference on Machine Learning. PMLR. 448–456.
- SZEGEDY, C., VANHOUCKE, V., IOFFE, S., SHLENS, J., WOJNA, Z., 2016. Rethinking the inception architecture for computer vision. in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2818–2826. https://doi.org/10.1109/CVPR.2016.308.
- SZEGEDY, C., IOFFE, S., VANHOUCKE, V., ALEMI, A. A., 2017. Inception-v4, inception-resnet and the impact of residual connections on learning. Thirty-first AAAI conference on artificial intelligence. 31. https://doi.org/10.1609/aaai.v31i1.11231.
- DONG, X., HUANG, J., QIN, F., HONG, X., 2023. Graph pooling method based on multilevel union. J.Beijing Univ. Aeronaut. Astronaut. 1–12. https://doi.org/10.13700/j.bh.1001-5965.2022.0386.
- BYCHKOVSKY, V., PARIS, S., CHAN, E., DURAND, F., 2011. Learning photographic global tonal adjustment with a database of input/output image pairs. in: Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition. 97–104.
- HE, L., WANG, S. GUO, Y., 2022. DE-XRT coal preparation image overlapping and adhesion particle segmentation method. Physicochem. Probl. Miner. Process. 58.
- SHARMA, A.K., NANDAL, A., DHAKA, A., KOUNDAL, D., BOGATINOSKA, D. C., ALYAMI, H., 2022. Enhanced watershed segmentation algorithm-based modified ResNet50 model for brain tumor detection. BioMed Res. Int. 7348344.
- CHOWDHURY, F. S., NOOR, T., ISLAM, M. S., ALAM, M. K., 2023. Brain tumor classification using watershed segmentation with ANN classifier. in: 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE). 1–5.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92e20a5e-d71c-429e-808c-6eff78d8fa03