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Abstract: Collecting information on the flotation foam characteristics is important for controlling 
flotation production conditions. Foam images acquired during coal slurry flotation are affected by 
factors such as ambient lighting, contributing to uneven grayscale images with low brightness and 
contrast. Brightness enhancement of foam images is often required when using network models to 
extract feature information from the images. The paper proposes a foam image brightness enhancement 
algorithm based on a multiscale convolutional neural network. The method employs a skip connection 
structure based on a summation connection design based on logarithmic functions and introduces a loss 
function based on logarithmic transformation in the network. At the same time, branching networks of 
different complexity are designed in the network to further help alleviate the gradient vanishing 
problem. The experimental results show that when evaluating the quality of images after brightness 
enhancement of foam images and the public dataset MIT, the numerical results of using the proposed 
skip connection structure in the proposed network are overall better than using the resblock structure, 
and the proposed loss function is better than is better than using the L2 loss function. The proposed 
network greatly improves the visual effect of flotation foam images and lays the foundation for feature 
extraction of flotation foam images and intelligent flotation production. 
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1. Introduction 

Coal slurry foam flotation is one of the most effective methods for achieving fine coal sorting based on 
the difference in hydrophobicity between the coal particles and gangue in the slurry. During the 
flotation production process, according to the difference in the wetting of the coal slurry surface, 
hydrophobic coal particles adhere to air bubbles and float to the slurry surface, with hydrophilic gangue 
remaining in the slurry as tailings. The flotation staff often make subjective judgments and perform 
manual operations on production variables, such as inflation volume and drug dosage, after obtaining 
information on the surface characteristics of the foam. However, frequent fluctuations in flotation 
production indices, high chemical consumption rates, and low resource recovery rates may occur 
depending on factors such as site lighting and personnel experience (Zarie et al., 2020; Wen et al., 2021; 
Aldrich et al., 2022; Pawlik et al., 2022; Cao et al., 2022). Therefore, using deep learning-based machine-
vision technology to monitor and identify the foam surface characteristic information during the 
flotation production process in real-time can guide the adjustment of relevant production elements and 
improve the mineral resource utilisation and economic efficiency of coal washing plants. Owing to 
factors such as uneven illumination and water vapour generation, foam images obtained at the 
production site often have low brightness and contrast, and uneven greyscale distributions, hindering 
the recognition and extraction of features (Zhang et al., 2019; Ju et al., 2022; Zhang et al., 2022). Zhang 
et al. (2019) employed the SSR algorithm (Jobson et al., 1997), which uses the original foam image minus 
the low-frequency components of the image obtained after log transformation. After resolving the 
uneven grayscale distribution and poor brightness and contrast of the foam images, they used a 
watershed segmentation algorithm with optimal markers to segment the foam images. Ju et al. (2022) 
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applied grayscale processing, the top-hat transform, and the filter transform before morphological 
feature extraction and segmentation to improve the brightness and contrast of the acquired foam images 
and solve the problem of uneven grayscale distribution. However, traditional low-light image 
enhancement methods such as grayscale processing, the top-hat transform, and the filter transform are 
susceptible to pixel-to-pixel relationships during image detail enhancement when processing foam 
images (Peng et al., 2023). 

Therefore, the paper proposes a multiscale convolutional neural network-based brightness 
enhancement method for foam images. The proposed method solves the problems of the uneven 
grayscale distribution and low image brightness and contrast of foam images, improves the visual effect 
of foam images, and lays the foundation for feature extraction and grade analysis of coal slurry flotation 
foam images. The contributions of this study are as follows:  

(1) In order to smooth out the changes in the image information features and at the same time 
increase the sensitivity to the changes, a designed logarithmic function is introduced in the skip 
connection structure. Meanwhile, the designed connection hopping structure can be used as a plug and 
play module for building target networks for image tasks. The designed connection skip structure can 
be used as a plug and play module to construct the target network of image tasks.  

(2) A new loss function based on a logarithmic transform is proposed. The effectiveness of the 
proposed network architecture and loss function in foam image brightness enhancement is 
experimentally verified. 

(3) In order to reduce the information loss, branches with different levels of complexity are designed 
in the deep learning-based brightness enhancement method. Experiments have proved that the network 
can effectively improve the brightness and contrast of the image and enhance the contour, edge, and 
detail information of the flotation image, thus laying the foundation for intelligently adjusting the 
production elements and guiding the flotation production process. 

2.    Related Work 

2.1. Traditional methods  

The problems of low brightness and contrast and uneven grayscale distribution in low-light images can 
be solved by traditional image-processing methods, such as the hue mapping algorithm (Cao et al., 2021; 
Pang et al., 2021; Zhu et al., 2022) and histogram equalisation (Hu et al., 2022; Xiao et al., 2022; Zhu et 
al., 2022). Guo et al. (2022) used histogram equalisation and filtering to preprocess coal slurry foam 
images for extracting coal slurry foam velocity features. Jiang et al. (2023) used the NSST method to 
identify the flotation working conditions of processed images for model training and testing. However, 
the hue-mapping algorithm may result in the loss of image details due to incomplete consideration of 
the relationship between pixels, whereas, in histogram equalisation, image details may be lost owing to 
over-enhancement (Peng et al., 2023). Therefore, image detail information must be carefully controlled 
in traditional low-light image enhancement methods. 

2.2. Deep-learning methods  

In recent years, deep-learning methods have been successfully applied in low-light image brightness 
enhancement tasks (Ma et al., 2022; Fan et al., 2022; Guo et al., 2023; Nguyen et al., 2023; Wang et al., 
2023). Self-calibrated illumination (SCI) involves low-light image brightening using a weight-sharing 
cascade mode learning process. In SCI, a self-calibration module converges the results of each stage to 
enhance the learning effect while relieving the computational pressure of the network structure using 
the cascade mode. Simultaneously, the self-calibration module constrains the unsupervised training loss 
defined in the SCI to enhance low-light image brightness enhancement. Moreover, supervised training 
losses were constrained to increase the luminance in low-light images (Ma et al., 2022). HWMNet (Fan 
et al., 2022), which uses half-wavelet attention blocks (HWABs) in each layer of the bilinear 
downsampling of the image to fully capture the image features in the wavelet domain, achieved good 
results in the image-exposure-adjustment task. Moreover, HWMNet uses bilinear downsampling in the 
gate post path to reduce image feature information losses and reconstructs the images using SKFF 
(Zamir et al., 2020). 
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3. Materials and methods 

The network used in this study is based on a multiscale neural-network architecture, with the specific 
network design shown in Fig. 1, where the network becomes finer as the image resolution increases, 
while the output of the coarse network at the previous scale is the input of the fine network at the next 
scale. The network improves the image resolution by upsampling between scales, which helps the finer 
network focus on the main image features. Meanwhile, branches of varying complexity designed in the 
network can mitigate the problem of vanishing gradients.  

  
Fig. 1. Designed network architecture 

3.1. Skip connection structure 

As shown in Fig. 2, the skip connection structure designed in this study consists of two convolutional 
layers and a summation skip connection designed according to the logarithmic function. Inspired by 
the ResBlock structure (He et al., 2016), ResNeXt structure (Xie et al., 2017), DenseBlock structure 
(Huang et al., 2017), and inception family of architectures (Szegedy et al., 2015; Ioffe et al., 2015; Szegedy 
et al., 2016; Szegedy et al., 2017), the skip connection structure mitigates the gradient disappearance 
problem by summing the outputs of different network layers to obtain the gradient information of each 
network layer.  

The designed skip connection structure is expressed as given by Eq. (1): 
H(𝑥) = 𝑥 + p(log(|p(𝑥) − 𝑥| + 1) + p(𝑥)/                                                   (1) 

where the image feature information x after the first convolutional layer is denoted as p(x), respectively. 
The image feature information after the skip connection structure is denoted as H(x). 
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Fig. 2. Designed skip connection structure 

The added logarithmic function makes the change of image information smoother while improving 
the sensitivity of the skip connection structure to the image information, while according to the nature 
of the logarithmic function, the addition of the function helps to eliminate the covariance and anisotropy 
between the connected image information without altering the original relationship between the pixels. 

3.2. Loss function 

The logarithmic transform in digital image processing can enhance the low-grey value details of an 
image by expanding and compressing the low- and high-grey value parts of the image, respectively, as 
given by Eq. (2). S and r represent the output and input grey values, respectively, C is a constant, and 
r ≥ 0. 

S = Clog(1 + r)                                                                      (2) 
Inspired by the logarithmic transform, a loss function based on the logarithmic transform is 

proposed, as given by Eq. (3), where the resolution of the foam image is m×n, and ro and rp represent the 
gray value of the target foam image after image normalisation and that of the foam image after 
brightness enhancement via image normalisation, respectively. 

loss = 6∑ ∑ "#$(&'|)!*)"|)#$%
&'(

)$%
*'(

,∗.
                                                                (3) 

The effectiveness of the proposed loss function in enhancing the brightness of foam images in the 
designed network structure is confirmed. The experimental results indicated that the loss function could 
effectively enhance image brightness. 

4.    Experiments 

4.1. Foam image acquisition 

Foam image data were obtained from the flotation production site of a coal-washing company in the 
Inner Mongolia Autonomous Region, China. The structure of the foam image acquisition device is 
shown in Fig. 3 and that of the site acquisition device is shown in Fig. 4.  

During the 8 d of filming, it was collected the foam images from flotation cells 1 and 2 of the flotation 
production plant every 20 min for 11 h per day. 

 
Fig. 3. Structure diagram of the acquisition device 

ConvInput + OutputLog Conv
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Fig. 4. Field image of the acquisition 

4.2. Experimental procedure and results 

The experimental equipment used in the experiments had a graphics processing unit of 2080Ti, a central 
processor of i7-12700KF, the optimiser used in the network was Adam, and the learning rate was set to 
0.0001. 

The MIT dataset (Bychkovsky et al., 2011) contains 5000 low-light images and corresponding 
brightness-enhanced images after processing. It was randomly selected 1000 images from this dataset 
for the network model comparison test. Under the same experimental conditions, the proposed method 
was compared with SCI (Ma et al., 2022), HWMNet (Fan et al., 2022), the network proposed by Hu et 
al. (2023), and the PSENet (Nguyen et al., 2023) network used for enhancing the brightness of low-light 
images. 

4.2.1. Coal slurry foam image dataset 

For the coal slurry foam image dataset, three image quality evaluation indices—standard deviation, 
contrast, and entropy—were selected to objectively evaluate the image brightness enhancement. The 
standard deviation reflected the contrast between brightness and darkness, the contrast reflected the 
degrees of brightness stretching and image clarity, and the entropy reflected the complexity of the 
feature information in the image; a larger image quality evaluation index value corresponds to a better 
image enhancement effect. The image evaluation indices obtained from the experiments are presented 
in Table 1, with the corresponding visual effects presented in Table 2. 

Table 1. Evaluation results for images of coal slurry foam after brightness enhancement 

 Standard deviation Contrast Entropy 
Proposed 0.250 140.18 5.22 

SCI 0.198 78.03 4.75 
HWMNet 0.200 81.59 4.57 
Hu et al. 0.192 55.80 5.15 
PSENet 0.256 95.71 4.95 

 
Among the selected image quality evaluation indexes, the proposed method achieves the highest 

results in other evaluation indexes except that the value of standard deviation is 0.006 lower than that 
of PSENet. (Table 1). Moreover, compared with the original image and other network-enhanced images 
(Table 2), more image details, such as coal slurry foam contours and edges, could be observed after the 
brightness enhancement of the coal slurry foam images. In addition, the images had better colour 
balance and visual effects. 
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Table 2. Coal slurry foam images after brightness enhancement 

Method Foam image 1 Foam image 2 

Original 

  

Proposed 

  

SCI 

  

HWMNet 

  

Hu et al. 

  

PSENet 

  

4.2.2. Traditional watershed division effect display  

Segmentation of coal foam flotation images before and after network enhancement using the most 
common conventional watershed algorithm to verify whether the enhanced froth images are useful for 
further image tasks, such as froth image feature extraction, to guide the flotation production process. 
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In image processing, the watershed algorithm is often used to segment image edges (He et al., 2022; 
Sharma et al., 2022; Chowdhury et al., 2023). This algorithm can be understood as rainwater landing on 
a mountain surface and flowing down the terrain; if the water lands on two different points belonging 
to the same region, it will eventually flow to the same local nadir and form a segmented region. Water 
falling on a ridge has the same probability of flowing into the surrounding areas; therefore, the ridge is 
a watershed. The segmentation results are presented in Table 3. 

Table 3. Foam image segmentation results 

 Foam image 1 Foam image 2 

Original 

  

Proposed 

  

Contrast Stretching 

  

Histogram equalization 

  

From the Table 3, it can be seen that more image information is not presented when the foam image 
is enhanced using the traditional contrast stretching method. There is more loss of image segmentation 
details when the foam image is enhanced using the traditional histogram equalization method. The 
foam edge details were clearer after the foam image was brightened by the proposed network. 
Additionally, the segmentation effect was closer to the foam edge, as judged by visual observation, 
when the traditional watershed segmentation algorithm was used to segment the foam edge. Thus, the 
brightness enhancement of the foam image by the proposed network helped the machine extract the 
foam feature information more efficiently. 

4.2.3. MIT dataset 

The MIT dataset (Bychkovsky et al., 2011) is a widely used image dataset containing 5000 original low-
light images and five sets that form 5000 pairs of images with the original images obtained via 
brightening processing by five professionals. For the MIT image dataset, the image quality evaluation 
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indices selected in this study were the peak signal-to-noise ratio (PSNR), structural similarity index 
measure (SSIM), and mean squared error after image brightness enhancement. Larger PSNR and SSIM 
values correspond to a better enhancement effect, while a smaller MSE value corresponds to a higher 
degree of similarity between the images before and after enhancement. The image evaluation indices 
obtained from the experiments are presented in Table 4, with the corresponding visual effects presented 
in Table 5. 

Table 4. Results of image evaluation after brightness enhancement for the MIT dataset 

 PSNR SSIM MSE 
Proposed 28.61 0.91 690.11 

SCI 28.27 0.86 1450.63 
HWMNet 27.74 0.78 2832.03 
Hu et al. 27.95 0.77 3075.06 
PSENet 27.82 0.80 2825.10 

 
The proposed network exhibited the largest PSNR and SSIM values and smallest MSE values, 

indicating that the brightness-enhanced MIT images had good similarity and image detail display. 
Moreover, after the brightening process, the MIT images had better image details, sharpness, and colour 
balance than the original image and the images processed by other networks, with the processed graph 
closest to the labelled image presented in Table 5. 

4.3.     Ablation experiments 

4.3.1.  Skip connection structure 

Ablation experiments on the possible begging and skip connection methods for the designed skip 
connection structure are conducted using the coal slurry foam image test set. As shown in the figure 3, 
the experimental skip connection structures for the test were defined as x + p(log(|p(x) − x| + 1) +
p(x)/. The experimental results on the publicly available MIT dataset are presented in Table 6, the 
experimental results on the coal slurry foam dataset are presented in Table 7. 

 
Fig. 3. x + p$log(|p(x) − x| + 1) + p(x)- 

The designed summation connection achieves better results in the quality evaluation metrics for the 
MIT dataset (Table 6), and the quality evaluation metrics for the coal slurry foam dataset are only 0.006 
lower on the metric of Standard deviation (Table 7). Therefore, the designed skip connection structure 
can help the network to achieve a better image brightness enhancement effect, however, whether this 
skip connection structure can achieve good results in other network structures for image processing 
tasks remains to be further explored. 

4.3.2.  Loss function 

The proposed loss function is compared with the L2 loss function commonly used in image tasks to 
verify its effectiveness. When the skip connection structure in the network is Resblock, the evaluation 
results for the MIT dataset are presented in Table 8, while those for the coal slurry foam dataset are 
presented in Table 9.  

As shown in Tables 8 and 9, When the skip connection structure in the network is Resblock, the 
designed loss function is worse than using the L2 loss when evaluating the MIT dataset only on the 
image quality assessment metric MSE, and when evaluating the coal slurry foam dataset, the results of 
the image quality assessment metrics were only 0.001 lower than the results using L2 loss on the quality 
evaluation metric Standard deviation. 

ConvInput + OutputLog Conv
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The proposed loss function is compared with the L2 loss function commonly used in image tasks to 
verify its effectiveness. When the skip connection structure in the network is as shown in Fig. 3, the 
evaluation results for the MIT dataset are presented in Table 10, while those for the coal slurry foam 
dataset are presented in Table 11.  

Table 5. Visual effects of MIT images after image enhancement 

 

Method MIT image 1 MIT image 2 

Original 

  

Proposed 

  

SCI 

  

HWMNet 

  

Hu et al. 

  

PSENet 

  

Label 
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Table 6. MIT dataset evaluation results 

 PSNR SSIM MSE 
ResBlock 28.61 0.91 736.06 
Proposed 28.63 0.91 690.11 

Table 7. Coal slurry foam dataset evaluation results 

 Standard deviation Contrast Entropy 
ResBlock 0.256 138.28 5.18 
Proposed 0.250 140.18 5.22 

Table 8. MIT dataset evaluation results 

 PSNR SSIM MSE 
L2 28.61 0.91 703.11 

Proposed 28.61 0.91 736.06 

Table 9. Coal slurry foam dataset evaluation results 

 Standard deviation Contrast Entropy 
L2 0.257 134.71 5.17 

Proposed 0.256 138.28 5.18 

Table 10. MIT dataset evaluation results 

 PSNR SSIM MSE 
L2 28.59 0.91 681.73 

Proposed 28.63 0.91 690.11 

Table 11. Coal slurry foam dataset evaluation results 

 Standard deviation Contrast Entropy 
L2 0.247 140.37 5.22 

Proposed 0.250 140.18 5.22 

As shown in Table 10 and 11, when the skip connection structure as shown in Fig. 3 is used in the 
network, the designed loss function is worse than using the L2 loss only for the image quality 
assessment metric MSE when evaluating the MIT dataset, and worse than using the L2 loss only for the 
image quality assessment metric contrast when evaluating the coal slurry foam dataset.  

As shown in Tables 8, 9, 10, and 11, the use of the designed loss function in the network is a better 
choice to help in the enhancement of brightness and contrast of the image and achieve a good result. 
However, further experiments are needed to investigate the effectiveness of the proposed loss function 
in building other network architectures for image-processing tasks. 

5. Conclusion 

The paper proposes a deep-learning method for the brightness enhancement of flotation foam images 
to solve the problems of uneven grayscale distribution and low brightness and contrast of foam images. 
A summation skip connection based on a logarithmic function and propose a loss function based on a 
logarithmic transformation is proposed. In addition, ablation experiments on the proposed summation 
skip connection structure and loss function to verify the effectiveness of the network in image 
brightening. The segmentation effect of the foam image before and after brightening was demonstrated 
using the traditional watershed algorithm. The improved visual effect of the foam image confirmed the 
effectiveness of the designed network for brightening the image. Overall, this method lays the 
foundation for effectively extracting foam image features and for intelligent adjustment of production 
factors in guiding the flotation production process. Further research is needed to evaluate the 
effectiveness of the proposed skip connection structure and loss function in other network architectures 
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and image tasks. Additional research will be conducted to lay the foundation for effective extraction 
and grade analysis of coal slurry flotation foam image features. 
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