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Abstract: In this paper we have investigated the 
existence, uniqueness and possibility of constructing of 
two-sided approximations to the positive solution of a 
heat conduction problem with two sources. 

The investigation is based on methods in operator 
equations theory in half-ordered spaces. In this case we 
have considered a nonlinear operator equation that 
corresponds to the initial boundary value problem in a 
cone of non-negative continous functions. The properties 
of the corresponding operator define conditions which 
provide the existence and uniqueness of the solution. The 
conditions link the parameters of the problem implicitly 
meaning that they don’t provide the range of allowed 
values but need to be verified for each specific 
parameters value set separately. 

During the investigation we have provided the 
scheme of a two-sided iteration process which must 
satisfy the conditions in order to converge to the positive 
solution from both sides. 

The computational experiment have been conducted 
in two domains – unit disk and unit half disk. We have 
applied both two-sided approximations method and 
Green’s quasifunction method for the problem solving. 
The obtained results are presented as a surface and level 
lines plots and also as a table. The results in 
corresponding domains obtained by different methods 
have been compared with each other. 

Key words: two-sided approximations, operator 
equation, positive solution, concave operator, conical 
interval, Green's function, Green's quasifunction. 
 

INTRODUCTION 
 

Modern science is highly interested in processes that 
take place in nonlinear environments. Mathematical 
models of these processes typically are represented by 
nonlinear boundary value problems of mathematical 
physics of the following form 
 

   ,,=Δ nRxufu    (1) 

 0,=|0,> uu  (2) 
 

where:   is a numerical parameter. 
Many profound problems are reduced to equation 

(1). For example: 
1) various problems in the theory of elasticity, where 

the parameter represents the load; 

2) temperature distribution during conduction of 
electrical current through a body (the parameter is a value 
of electrical current); 

3) auto-oscillation problems (the parameter is the 
unknown period) etc. 

More specifically, if  
 

  ueuf  , 
 

then problem (1), (2) is a mathematical model of a flow 
in conductive environment inside an impenetrable 
cylinder [1]; when  
 

  ueuf  , 
 
equation (1) is a stationery equation of the thermal theory 
of spontaneous ignition of chemically active gas mixture 
inside a vessel [2-5], in this case problem (1), (2) is called 
the Liouville-Gelfand problem; if  

 

  puuf  , 0p , 
 

then we have a mathematical model of gas density 
distribution in a star (equation (1) in that case is called 
the Lane–Emden equation) [6]; the problem of model 
selection of population migration in genetics leads to 
problem (1), (2) with  

   quuf  1   [7]; 
 

problem (1), (2) with  
 

  puuf   ,   pq uuuf   , 

    ueuf   ue  
 
are considered in [8, 9] and with  

  pq ubuauf   , 0a , 0b , 0q , 0p  
 
in [10]. 

Problem (1), (2) is equivalent to the integral equation 
in C  
 

 ,))((),(=)( dssufsxGxu 


 (3) 
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where:  sxG  is a Green's function for the operator 

u  of the first boundary value problem in the domain  
 

 ,   nxxx  ,   nsss  . 
 

Now we rewrite equation (3) as follows:  
 

,Tuu   
 

where: dssufsxGTu ))((),(= 


 is an operator with 

domain   KTD  , K is a cone of non-negative 

functions in the space  C . 
It’s naturally to expect that the existence and 

uniqueness of the positive solution of equation (1), and 
hence problem (1), (2), significantly depends on 
properties of the operator T and the form of  uf , . The 
cases of monotone and antitone operator uT  are 
considered in [11-13]. 

Since the construction of Green's functions can be 
quite complicated even for two-dimensional problems 
there are only few cases for which a constructive solution 
can be obtained. In complex domains Green’s 
quasifunction method can be used [14]. The method is 
based on the construction of a boundary equation. R-
functions theory plays a significant role in solving this 
task [14, 15, 16]. 

In this work we investigate the following problem 
[8] 
 

 
0,=|0,>

,=Δ





uu
xuuu pq

 (4) 

 
where: 0>,<1<<0 pq .  

 
The equation of the problem (4) is a stationary heat 

conduction equation with two sources of different power 
and describes heat distribution over a plate (domain  ) 
that doesn’t change in time. It happens when stationary 
sources of heat act for a long time and transitional 
processes caused by them have been finished. The terms 

qu  and pu  represent the power of heat sources. 
 

EXISTENCE OF POSITIVE SOLUTIONS 
 

Problem (4) is equivalent to the integral equation in 
C  

 

 .)]()()[,(=)( dssususxGxu pq 


  (5) 

 
We need following definitions in the sequel [17-19]. 
Definition 1. A convex closed set K in Banach space 

E is called a cone if this set contains, together with each 
element u, ( u ), all the elements of the form tu  for 

t  and does not contain the element u , where   is 
the zero element of E. 

Definition 2. The cone K is called normal if there 
exists an KN  such that:  

 

vKNu   for vu  , Kvu  . 
 
More precisely, the cone K is called normal if there 

exists a   such that the inequality:  
 

  ff  
is satisfied for all  
 

Kff   ,   ff . 
 
The cone of non-negative functions is normal in the 

space C. 
Definition 3. The collection of elements Ku  for 

which   wuv  is called the conical interval 

  wv . 
Definition 4. An operator T is monotone  if 

TwTv   follows from wv  , Kwv  . 
Definition 5. An operator T is positive   if 

KTK  . 
Definition 6. Let E and F be Banach spaces. An 

operator, acting from E into F, is called completely 
continuous if it maps every bounded set of the space E 
onto a (relatively) compact set of the space F. 

Definition 7. Let  xuxf   be a non-negative 
and concave function (i.e. 
 
  xuxftxutxf   (6) 
 
for all t  u  and x ). Then an operator  
 

dssusfsxGTu ))(,,(),( 


  

 

is called u -concave on K  if 
 

   xuTuxu   u ,  , (7) 
 

where: Ku   is a fixed non-zero element.  
Suppose K is a cone of non-negative functions in 
C . Let 

 Tuu   (8) 
 
be an operator equation defined over K, where:  
 

 


dssususxGTu pq  

 

Since the cone K is normal and the function 
pq uuuf    is continuous in u, it follows that the 

operator T is completely continuous if it maps C  on 
itself [17, 18]. 
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First, we state 
Lemma 1. The operator T has following properties: 
1) T is monotone. 
2) There is a conical interval   wv  such that  

  wvwvT . 

3) T is u -concave, where: 
 

 


 dssxGu  

 
Proof. 1) The proof is trivial. 
2)  Let us build   wv . 

It is advised in [17] to put v  if  uxf   is 
monotonically increasing in u. Following this advice we 
get 
 

 


  dsvvsxGTvv pq  

 
Therefore, the interval's left endpoint stays still if we 

apply the successive approximation scheme: 
 

 


 




n

dssususxGxu p
n

q
nn 

 (9) 

 
It means that we obtain approximations from above only 
instead of two-sided ones. 
 

Now we introduce the following concept. Let v  be  
 

 xxv   

where: x  in  ,  x , 
0>= const . 

 
Remark 1. The function x  can be constructed 

practically for any domain using R-functions theory [14]. 
Hence, 

 

 


  dsvvsxGv pq  

 


dssssxG ppqq   

 



 dssssxG pqpqq   

 



 dssssxG pqpqq   

 
From the inequality   vv  it follows that 

 

 



 xdssssxG pqpqq   

or 

 



 dssssxG pqpq   




  xx q
q 




 

 
Then, squaring the last expression and applying the 

Cauchy-Schwarz inequality vuvu  : 
 






















 dssssxG pqpq   

  xq   

 







 dsssdssxG pqpq   

  xq   
or 
 

 




 dsssMx pqpqq   

 

where:  


 dssxGM

x
max  

 
Finally, we obtain 

 

 
dsssM

x

pqpqq
x















 

max
 (10) 

 
and this estimate is satisfied for any domain  . 

Let us find w . First we put 

 constw   Then, using the inequality 

  ww  and scheme (9) we obtain 
 

 


  dsswswsxGxw pq  

 


 dssxG pq  

 
It now follows that 

 

 


 pqL



 (11) 

 

where:  


dssxGL
x
max  

 
Thus, conditions (10) and (11) link parameters p, q 

and  ,  . The latter ones define the conical interval 
 

   wxv . 
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3) In order to show u -concavity we will use 
Definition 7. 

Since we have shown how to build   wv , it 
follows that (7) is satisfied. 

Furthermore, from (6)   







tt
tt

q

pqp
  

Now we define 





tt
tttg q

p
:  

 
Solutions of the equation 

 

 0=)1)(1())((1 11 pqqp tqtttpt    (12) 
 
define maximum values of the function tg  for 

t .  
 
 
Let t  be a solution of (12). Now note that 
 







 qq
pptg

t
lim  

 
This implies that the parameters  , q, p, and the constant 
  must also satisfy 

 

 


























tt
tt

qq
pp

q

p
qpqp  max (13) 

 
This completes the proof of the lemma. 
Now, we build an iteration process for equation (8) 

by the following scheme 
 

 

.





















n

dsswswsxGxw

n

dssvsvsxGxv

p
n

q
nn

p
n

q
nn





 (14) 

 
 
The main result of this paper is 

Theorem 1. Process (14) converges to  xu  from 
both sides with respect to the norm of space C  if 
 , q, p,  ,   satisfy (10), (11), and (13), where 

 xu  is an exact positive single solution of equation 
(5) and 
 

 


 wwuvv   
 

Proof. First, we know that the cone CK  is 
normal. The operator T is completely continuous 

Ku , monotone and maps conical interval 
  wv  into itself by Lemma 1 if  , q, p,  ,   

satisfy (10), (11), and (13). It now follows that the 
equation has exactly one positive solution [17]. 

Then since the operator T is also u -concave by 
Lemma 1 and the cone K is normal it follows that process 

(14) converges to  xu  from both sides with respect to 
the norm of space C  [17]. 

This completes the proof of the theorem. 
 
 

GREEN'S QUASIFUNCTION 
 

Rvachev V.L. proposed to consider a special 
function which is close in particular sense to Green's one 
[14]. It's called Green's quasifunction. Now let's see how 
it can be established for problem (4). 

Let   be the normalized boundary equation of 
the first order on boundary  , namely 
 

 




xx
xx




 (15) 

 
Now we put 

 

  














Rsxrsx

Rsxrsx



 ln
 

 
where:  sxr  
 

The Green's quasifunction can be established as 
follows 
 









































Rsx
r

sxG

Rsx
r

sxG







ln
 

 
Then problem (4) can be reduced to nonlinear 

integral equation 
 

 













dssxKsu

dssususxGxu pq

 (16) 

 

where: ,),,(
2
1=),( 2

2
2

2

2
1

2
Rsx

ss
sxK 
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1=),( 3
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2
2

2

2
1

2
Rsx

sss
sxK 




























 


 

 
Now we reduce (16) to a sequence of linear integral 

equations by applying the method of successive 
approximations [20] 
 

 



















m

dssususxG

dssxKsuxu

p
m

q
m

mm

  (17) 

 
where:  xxu  ,  const . 

Each of equations (17) can be solved by Bubnov-
Galerkin method [21]. In that case we have the following 
sequence of the solution approximations 
 

 


  xcxu iim
k

i
km   

 

where: xi  is a coordinate sequence, imc   ( ki  , 

m ) is a solution of a system of linear algebraic 
equations: 
 

































kj

dxdsxsususxG

dxdsxssxK

dxxxc

j
pq

ji

jii
k

i

,





 

 










dxxxc jiim
k

i
  (18) 
























mkj

dxdsxsu

susxG

dxdsxssxK

j
p

km

q
km

ji







 

 
 

COMPUTATIONAL EXPERIMENTS 
 

As an illustration of process (14) we now look at the 
examples in two domains using both Green's functions 
and quasifunctions. 

 

Example 1 (Unit Disk for Green's Function). Take 
 

   



 xxxxx  (19) 

 
 

 
The corresponding Green's function in the domain 

  is: 
 





























sxsx
sxG


lnln  

 

where: s  is a fixed point, s  is an 'image point' on 
the prolonged line segment from the disk center O to s 

such that  ,   is a distance from O to s,   is a 

distance from O to 1s  (see Fig. 1). 
 
 

 
 

Fig. 1. Points for Green’s function expression in Disk 
domain 
 
 

The function x  is:  
 

 



 xxx  

 
It means that:  
 




x
x

max  

 
Now, by (10), so that: 

 



























 pqpq
M qpp

q





  (20) 

 
We have 0.04,M  0.25.L  
 
Using (11), (13), and (20) we put p , q , 
 , 0.5= ,  . 
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The surface of the upper approximation of the 

solution w  and its level lines are illustrated in Fig. 2 
and Fig. 3 respectively. 

 

 
Fig. 2. The surface of w  

 

 
Fig. 3. The level lines of w  
 

The values of the approximations 18v  and 18w  at 

the points of domain   in polar coordinates ),( ji  , 

ii 0.2= ,  jj 0.1= , 1,4=i , 1,5=j   are shown in 
Table 1. 
 

 

 

Table 1. The values of 18v  and 18w  

   
  

0.2 0.4 0.6 0.8 

10


 
18w  0.419061 0.357569 0.258870 0.133876 

18v  0.418969 0.357491 0.258815 0.133848 

5


 
18w  0.419073 0.357322 0.258291 0.133475 

18v  0.418981 0.357244 0.258235 0.133447 

10
3

 
18w  0.419096 0.357075 0.257844 0.133076 

18v  0.419004 0.356997 0.257788 0.133048 

5
2

 
18w  0.419131 0.357245 0.258149 0.133283 

18v  0.419039 0.357167 0.258094 0.133255 

2


 
18w  0.419188 0.358912 0.261326 0.135752 

18v  0.419095 0.358834 0.261270 0.135723 
 
 

Example 2 (Unit Disk for Green's Quasifunction). 
Let 
 

 )(1
2
1=)( 2

2
2
1 xxx   (21) 

 
be the normalized boundary equation of the first order on 
 , where   is defined by (19). Indeed, conditions 

(15) are satisfied for (21). 

In this case equation (16) will be reduced to (5) 
which means that Greens' quasifunction is equal to 
Green's function in Disk region. 
Therefore, the results will be the same as in Example 1. 

 

Example 3 (Unit Half Disk for Green's Function). 
Take 
 

 .0>0,>1|),(== 2
2
2

2
121 xxxxxx    (22) 
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The corresponding Green's function in the domain 

  is 

,
||

1ln
||

1ln

||
1ln

||
1ln

2
1=),(

1

1



























'sxsx

sxsx
sxG




 

where: s, 1s ,   are described in Example 1, s , 's1  are 

'image points' corresponding to s and 1s  respectively 
(see Fig. 4). 
 

 
 

Fig. 4. Points for Green’s function expression in Half 
Disk domain 
 

The function )(x  is )(1=)( 2
2

2
12 xxxx   

meaning that 1.=)(max x
x




 

In this case we have 0.015,M  0.097.L  
 
Using (11), (13), and (20) we put 2=p , 0.5=q , 
8= , 0.5= , 1= . 

The surface of the upper approximation of the 
solution 15w  and its level lines are illustrated in Fig. 5 
and Fig. 6 respectively. 
 
 

 
Fig. 5. The surface of 15w  
 

 
The values of the approximations 15v  and 15w  at 

the points of domain   in polar coordinates ),( ji  , 

ii 0.2= ,  jj 0.1= , 1,4=i , 1,5=j  are 
shown in Table 2. 
 

 
 

Fig. 6. The level lines of 15w  
 

Example 4 (Unit Half Disk for Green's 

Quasifunction).  
Let 

 

 2
2
2

2
1 )(1

2
1=)( xxxx   (23) 

 
be the normalized boundary equation of the first 

order on  , where   is defined by (22). Indeed, 
conditions (15) are satisfied for (23). 

Now we put 0.5= , so that 
 

.)(1
4
1=)( 2

2
2

2
10 xxxxu   

 
 
Then we select the following coordinate sequence 
 

,0,2=,0,2=

1),(2)()(=)(

121

2211

iii

xPxPxx iii




 

 

where: ki 1,= , 6=k , )(zPm  are Legendre 
polynomials  
 

 .1)(
!2

1=)( 2 m
m

m

mm z
dz
d

m
zP   

 
Solving the system of equations (18), we get the 
approximation of the solution 14,6u . Its surface and level 
lines are illustrated in Fig. 7 and Fig. 8 respectively. 
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Fig. 7. The surface of 14,6u  

 
 
 

Fig. 8. The level lines of 14,6u  

 

Table 2. The values of 15v  and 15w  

   
  

0.2 0.4 0.6 0.8 

10
  15w  0.094379 0.159946 0.167969 0.109479 

15v  0.094362 0.159917 0.167939 0.109459 

5
  15w  0.175253 0.284471 0.286695 0.179712 

15v  0.175221 0.284419 0.286643 0.179680 

10
3  15w  0.235852 0.371114 0.363978 0.223259 

15v  0.235808 0.371045 0.363910 0.223218 

5
2  15w  0.273067 0.421881 0.407777 0.247385 

15v  0.273017 0.421802 0.407701 0.247339 

2
  15w  0.285590 0.438515 0.421797 0.255014 

15v  0.285537 0.438432 0.421718 0.254967 
 

The values of the approximation 14,6u  at the points of domain   in polar coordinates ),( ji  , ii 0.2= , 

 jj 0.1= , 1,4=i , 1,5=j  are shown in Table 3. 
 

Table 3. The values of 14,6u  

  
  

0.2 0.4 0.6 0.8 

10
  0.097834 0.160302 0.167488 0.111392 

5
  0.180005 0.285107 0.287184 0.183040 

10
3  0.241369 0.372598 0.365651 0.226659 

5
2  0.279068 0.424053 0.410050 0.250792 

2
  0.291761 0.441007 0.424467 0.258674 
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CONCLUSIONS 

 
We have built an iteration process that converges to a 

positive solution of (4) from both sides. Also, we have 
introduced a new approach for constructing conical 
intervals, as a left endpoint we )(=)(0 xxv   instead 

of 0=)(0 xv , where: 0>)(x  in  , 0=|)( x , 
and const= . 

This approach can be used when the lower 
approximations don't move from the starting position. 

We've obtained a condition that links parameters  , 
q, p,  ,   and guarantees existence and uniqueness of a 
positive solution. 

By building the cone segment 00, wv  we provide 
an a priori estimate of the solution, since 00 wuv  . 
The actual two-sided approximations allow us to make a 
posteriori conclusions. 

The algorithm implementation simplicity and 
relatively small computational resources are the main 
advantages of the provided method. 

Green's quasifunction method has been investigated 
to compare the results. The functions )(x  and )(x  
can be constructed using R-functions theory [14] in case 
of domains with complex boundary. 

The experimental results in unit disk and unit half 
disk have shown the efficiency of the provided method. It 
can be used to solve boundary value problems for 
stationary heat conduction equations of the form (4) or 
other problems that are reduced to (4). 
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