PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Wetting Agent and Carbide Volume Fraction on the Wear Response of Aluminum Matrix Composites Reinforced by WC Nanoparticles and Aluminide Particles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aluminum matrix composites were prepared by adding submicron sized WC particles into a melt of Al 1050 under mechanical stirring, with the scope to determine: (a) the most appropriate salt flux amongst KBF4 , K2 TiF6 , K3 AlF6 and Na3 AlF6 for optimum particle wetting and distribution and (b) the maximum carbide volume fraction (CVF) for optimum response to sliding wear. The nature of the wetting agent notably affected particle incorporation, with K2 TiF6 providing the greatest particle insertion. A uniform aluminide (in-situ) and WC (ex-situ) particle distribution was attained. Two different sliding wear mechanisms were identified for low CVFs (≤1.5%), and high CVFs (2.0%), depending on the extent of particle agglomeration.
Słowa kluczowe
Twórcy
autor
  • Department of Materials Science & Engineering, University of Ioannina, Ioannina 45110, Greece
autor
  • Department of Materials Science & Engineering, University of Ioannina, Ioannina 45110, Greece
  • Department of Materials Science & Engineering, University of Ioannina, Ioannina 45110, Greece
autor
  • University of Miskolc, Miskolc-Egyetemváros, Hungary
autor
  • University of Miskolc, Miskolc-Egyetemváros, Hungary
autor
  • University of Miskolc, Miskolc-Egyetemváros, Hungary
autor
  • University of Miskolc, Miskolc-Egyetemváros, Hungary
Bibliografia
  • [1] R. Casati, M. Vedani, Metals 4, 65 (2014).
  • [2] Subhranshu Chatterjee, Amitava Basu Mallick, Mater. Sci. Forum 36, 72 (2013).
  • [3] D. Kumar Koli, G. Agnihotri, R. Purohit, Procedia Mater. Sci. 6, 567 (2014).
  • [4] G.U. Wan-Li, Trans. Nonferrous Met. Soc. China 16, 398 (2006).
  • [5] H.R. Lashgari, Sh. Zangeneh, H. Shahmir, M. Saghafi, M. Emamy, Mater. Design 31, 4414 (2010).
  • [6] M. Hossein-Zadeh, M. Razavi, O. Mirzaee, R. Ghaderi, J. King Saud University – Engineering Sciences 25, 75 (2013).
  • [7] H. Abdizadeh, R. Ebrahimifard, M.A. Baghchesara, Compos. B Eng. 56, 217 (2014).
  • [8] J. Wang, D. Yi, X. Su, F. Yin, H. Li, Mater. Design 30, 78 (2009).
  • [9] M. Karbalaei Akbari, S. Rajabi, K Shirvanimoghaddam, H.R. Baharvandi, J. Compos. Mater. 49, 3665 (2015).
  • [10] I. Narasimha Murthy, D. Venkata Rao, J. Babu Rao, Mater. Design 35, 55 (2012).
  • [11] Hao Yu. Processing Routes for Aluminum based Nano-Composites. MSc Thesis, Worcester Polytechnic Institute, April 2010.
  • [12] A. Evirgen, M. Lütfi Övecoglu, J. Alloy Compd. 496, 212 (2010).
  • [13] A R.K. Swamy, A. Ramesha, G.B. Veeresh Kumar, J.N. Prakash, J. Miner. Mater. Charact. Eng. 10, 1141 (2011).
  • [14] A. Simon, D. Lipusz, P. Baumli, P. Balint, G. Kaptay, G. Gergely, A. Sfikas, A. Lekatou, A. Karantzalis, Z. Gacsi, Arch. Metall. Mater. 60, 1517 (2015).
  • [15] G.B.V. Kumar, A.R.K. Swamy, A. Ramesha, J. Compos. Mater. 46, 2111 (2012).
  • [16] A.E. Karantzalis, A. Lekatou, E. Georgatis, Th. Tsiligiannis, H. Mavros, J. Mater. Eng. Perform. 19, 1268 (2010).
  • [17] K. Kalaiselvan, I. Dinaharan, N. Murugan, Mater. Design 55, 176 (2014).
  • [18] K.L. Juhasz, P. Baumli, J. Sytchev, G. Kaptay, J. Mater. Sci. 48, 7679 (2013).
  • [19] A.E. Karantzalis, A. Lekatou, E. Georgatis, V. Poulas, H. Mavros, J. Mater. Eng. Perform. 19, 585 (2010).
  • [20] Y. Birol, J. Alloy Compd. 440, 108 (2007).
  • [21] A.R. Kennedy, A.E. Karantzalis, Mater. Sci. Forum 217-222, 253 (1996).
  • [22] A. Lekatou, A.E. Karantzalis, A. Evangelou, V. Gousia, G. Kaptay, Z. Gácsi, P. Baumli, A. Simon, Mater. Design 65, 1121 (2015).
  • [23] G.B.V. Kumar, C.S.P. Rao, N.J. Selvaraj, J. Miner. Mater. Character. Eng. 10, 59 (2011).
  • [24] R.L. Deuis, C. Subramanian, J.M. Yellup, Compos. Sci. Technol. 57, 415 (1997).
  • [25] M. Kök, K. Özdin, J. Mater. Process. Technol. 83, 301 (2007).
  • [26] R.S. Rana, R. Purohit, S. Das, Int. J. Scientific Research Publications 3 (9), 1 (2013).
  • [27] K.K. Ekka, S. R. Chauhan, Varun, Arab. J. Sci. Eng. 40, 571 (2015).
  • [28] D.R. Lide (ed.), CRC Handbook of Chemistry and Physics, CRC Press, 1991-1992.
  • [29] H. Baker (ed.), ASM Handbook, vol. 3: Alloy Phase Diagrams, 9th ed., ASM Intern. Materials Park, OH, (1997).
  • [30] N. El-Mahallawy, M.A. Taha, A.E.W. Jarfors, H. Fredriksson, J. Alloy Compd. 221, 29 (1999).
  • [31] R. Chen, G. Wu, Q. Zhang, J. Am. Cer. Soc. 83, 3196 (2000).
  • [32] M.K. Surrapa, P.K. Rohatgi, J. Mater. Sci. 16, 983 (1981).
  • [33] E. Georgatis, A. Lekatou, A.E. Karantzalis, H. Petropoulos, S. Katsamakis, A. Poulia, J. Mater. Eng. Perform. 22, 729 (2013).
  • [34] H. Mavros, A.E. Karantzalis, A. Lekatou, J. Compos. Mater. 47, 2149 (2013).
  • [35] V. Gousia, A. Tsioukis, A. Lekatou, A.E. Karantzalis, J. Mater. Eng. Perform., (2016), DOI: 10.1007/s11665-016-1947-1.
  • [36] A.D. Sarkar, Friction and wear, Academic Press, London, 1980.
Uwagi
EN
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92d430a3-aa85-4399-802c-6b76b4930ffb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.