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Abstract. Let K be a cubic curve in the projective space P 3 and let T1 and T2 be points 
determining a bisecant T1T2 of K. We fix a point A on K and a point B ≠ A which does not lay 
on K, and such that T1T2 ≠ AB. We are interested in the set of points X generated by the 
equation (T1, T1; M, X) = –1 where M denotes the point at which AB meets the bisecant T1T2. 
So we consider the line congruence of order 1 and of class 3 in the aspect of the harmonic 
cross-ratio. We derive theoretic formulas for the set of X ‘s and we go on in the harmonic case 
– then the set of X ’s is a conic. We use the computer algebra system Derive 5 from Texas 
Instruments, Inc., USA, to produce visualizations of the images of resulting curves. 

Keywords: projective geometry, cross-ratio, conics, bisecant, visualization, computer 
algebra system 

 

1 Basic notions on three-dimensional projective space 
As usually, P 3 denotes a real projective space of dimension 3, a quadruple 
b = ( b1 : b2 : b3 : b4 ) is the natural identification of a (regular, usual) point in P 3 if b4 ≠ 0, 
and it is said to be a point in the infinity  if b4 = 0. Numbers b1, b2, b3, b4 are called 
homogeneous coordinates of b. In the Cartesian space R 3 the natural representation of 
a point b = ( b1 : b2 : b3 : b4 ) is the point ( b1/b4, b2/b4, b3/b4 ), and a point ( b1 : b2 : b3 : 0 ), 
called a direction, can be seen as a direction of the vector [ b1, b2, b3 ]

T. For any b, c ∈ P 3 we 
write b ≡ c, and we say b and c are equivalent, iff there exists a nonzero number λ (called 
a homogeneity multiplier) such that  b = λ⋅c. 

Any curve in P 3 can be described by the set of four equations in one variable. The 
formula p(t) = ( 1 : t : t2 : t3 ), where t  runs from –∞ to +∞, defines the spatial curve in P 3. In 
appropriately chosen coordinate system this formula describes the cubic curve; it is an 
example of a skew curve, we denote it by K and we call it a standard, or reference, curve.  

A line congruence in P 3, or a congruence of lines, is defined as a two-parameter 
family of lines in P 3. Here we deal with the (1, 3)-congruence in P 3, i.e., the line congruence 
of order 1 and of class 3. In the terminology used in Grassmann varieties, we deal with the set 
of all 1-dimensional subspaces of a projective space of dimension 3. It says that  

    1) there is exactly one line congruence that passes through an arbitrary point of P 3, 
    2) in any plane P 2 there are exactly 3 lines belonging to the line congruence at hand. 

The study of line congruences has been very popular in the turn of two last centuries 
and it is still investigated all over the world (see, e.g. [1], [2], [4]-[7]).  

A line which cuts the given curve at exactly two points is called a bisecant of this 
curve. It was proved by Ernst Kummer in 1866 (and reproved in 1986 by Ziv Ran) that there 
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are exactly two different types of (1,3)-congruences: 1) the congruence of bisecants to 
a twisted cubic, 2) the congruence of lines meeting a twisted cubic and a bisecant to it, or 
a degeneration of it. We consider the first of these cases.  

Let’s take two distinct values t1, t2. They produce two distinct points T1 := K(t1), 
T2 := K(t2) sitting on the curve K. It is well-known (see, e.g. [3]) that the straight line T1T2, 
i.e., the line passing through points T1 and  T2 is the bisecant of our twisted curve K. 

2 Cross-ratio of four numbers and four points 
As usual, a cross-ratio, or double ratio, determined by distinct numbers a, b, c, d  is 

 (a, b; c, d) := 
cb

db

da

ca

−
−⋅

−
−

. 

Usually its value is denoted by λ. In the next we investigate in details the case λ = –1. 
Then we have so-called harmonic division and we deal with a harmonic cross-ratio. 

A cross-ratio of four points, A, B, C, D, is defined by the same formula as that of four 
numbers, but now a, b, c and d stand for the number identifiers of these points in the local 
coordinate system; usually, a – b is the signed distance between points A and B. As in the 
number case, the cross-ratio of points is denoted by (A, B; C, D). 

3 Coordinates of the point M 
Let’s take a point A = K(a) = ( 1 : a : a2 : a3) and a point B = (b1 : b2 : b3 : b4) ∉ K such that 
the line AB is not a bisecant of K. Next, let’s take an arbitrary point M on AB. We discuss the 
line congruence of order 1, so there exists [3] exactly one bisecant of K passing through M. 
Let’s denote the points, at which this bisecant intersects K, by T1 := K(t1), T2 := K(t2). 

Since the point M = ( m1 : m2 : m3 : m4 ) ∈ T1T2, so there exist reals α, β such that  
 M ≡ α⋅T1 + β⋅T2.  (1) 
Since M is different from both T1 and T2, so α2 + β2 > 0. Therefore the equation (1) is  
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where ρ is a homogeneity multiplier. From two first equations of the system (2) we obtain  
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It shows than we can work on with ρ = 1 and we have 
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where 
      s := t1 + t2,  p := t1⋅t2. (5) 
In consequence, unambiguously to the numeration, we get  
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Values t1 and t2 produce points T1 and T2 laying on K. Substituting (5) in (3) we get the values 
of coefficients α, β and this way we have the point M ≡ α⋅T1 + β⋅T2. 

4 Finding the conjugate to given point to have the fixed cross-ratio 
The bisecant T1T2 and the straight line AB ≠ T1T2 meet at M. Now we look for a point X which 
lays on T1T2 and completes the triple (T1, T2, M) in such a way that points T1, T2, M and X 
form their cross-ratio equal to a given real λ. This four can be arbitrarily ordered, so there can 
be two such points. First, we look for X = (x1 : x2 : x3 : x4) such that  
 (T1, T2; M, X) = λ. (8)   
Taking into account that M lays on the line AB, the demand (8) gives that  
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where  ρ is an homogeneity multiplier, and α, β are coefficients given by (3).  
Taking into account the formulas (3) and (5) we derive following representation 
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where ψ1 :=   m1⋅m1⋅m3 – 3m1⋅m2⋅m3 + 2m2⋅m2⋅m2, 
          ψ2 :=   m1⋅m2⋅m4 – 2m2⋅m3⋅m3 +   m2⋅m2⋅m3,  
          ψ3 := 2m2⋅m2⋅m3 –   m1⋅m3⋅m4 –   m2⋅m3⋅m3, 
          ψ4 := 3m2⋅m3⋅m4 – 2m3⋅m3⋅m3 –   m1⋅m4⋅m4, 
          ∆2 :=  (m1⋅m4 – m2⋅m3)

2  – 4⋅(m2⋅m4 – m3⋅m3)⋅(m1⋅m3 – m2⋅m2). 
Therefore the above representation writes down as follows  
 ρ⋅x = (λ – 1)⋅ψ – (λ + 1)⋅m⋅ 2∆ , (11) 

where x, ψ and m stand for the vectors with components xj, ψj and mj, respectively. 
Now we look for the point Y such that  

 (T1, T2; Y, M) = 1/λ.  (12)    
Proceeding analogously as above, we derive the representation   

 ρ⋅y = (λ – 1)⋅ψ + (λ + 1)⋅m⋅ 1∆ . (13) 

We see that the representations of both points, x and y, differ only in the way in which 
the second term is involved: in (11) it is subtracted, while in (13) it is added. For the harmonic 
cross-ratio, i.e., when λ = –1, the second term gives no share and x = y.  

Since now we continue our research with λ = –1. Then 1/λ = λ and we have only one 
point X = ( x1 : x2 : x3 : x4) such that  
   (T1, T2; M, X) = –1.  (14) 

Taking into account the parametric representation,  
 M = A⋅u + B, 

of the line AB and combining all above we express the coordinates of the point M in 
terms of the coordinates of A, B and both T1, T2. This way we derive the relation  
   ρ⋅x = – 2⋅ψ, (15) 

where ψj = ψj(u) are polynomials (of second degree in the variable u) given by 
formulas  
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ψ1 := {b4 – 3a⋅b3 + 3a2⋅b2 – a3⋅b1)} ⋅u2 + {2b1⋅b4 + a3⋅b1
2 – 3a⋅b1⋅b3  – 3b2⋅b3            

  + 6a⋅b1
2 – 3a2⋅b1⋅b2 } ⋅u + b1⋅(b1⋅b4 – 3b2⋅b3) + 2b2

3, 
ψ2 := a⋅{ b4 – 3a⋅b3 + 3a2⋅b2 – a3⋅b1 } ⋅u2 + {2b3⋅(a⋅b2 – b3) + (a⋅b1 + b2)⋅(a2⋅b2 + b4)  
             – 4a2⋅b1⋅b3 } ⋅u + b2⋅(b1⋅b4 + b2⋅b3) + 2 b1⋅b3

2, 
ψ3 := a2⋅{ b4 – 3a⋅b3 + 3a2⋅b2 – a3⋅b1 } ⋅u2 + {2a2⋅b2⋅(a⋅b2 – b3)  
             – (a2⋅b1 + b3)⋅(a⋅b3 + b4) + 4a⋅b2⋅b4 } ⋅u + 2b2

2⋅b4 – b3⋅(b1⋅b4 + b2⋅b3), 
ψ4 := a3⋅( b4  – 6a⋅b4  + 3a2⋅b2 + 3a⋅b3 – a3⋅b1 )⋅u2 +{3a⋅b4⋅(a⋅b2 + b3 – 2a⋅b4)  
              – b4⋅(b4 + 2a3⋅b1) + 3a3⋅b2⋅b3 } ⋅u + b3⋅(3b2⋅b4 – b1⋅b3) – 2b4

3, 
The curve governed by (15) will be referred to as the curve (a, b)-adjoint to the line K, 

or, shortly, (a, b)-curve. The same terminology will be used for the natural representation of 
this curve in the space R 3 embedded in the standard Cartesian coordinate system Oxyz, i.e., it 
will be used for the line described parametrically as follows   
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5 Some remarks on the image of a straight line in P 3 
Formula (15) reveals that the set of all points X generated by M running the line AB is an 
algebraic curve in P 3 of the 2nd degree. In consequence, its natural representation (16) in R 3 
determines an algebraic curve, and each component in (16) is a rational function of the degree 
at most 2 in both nominator and denominator.  

We undertake the task to recognize this representation. We will do it via the analysis 
of its projection on basic planes, i.e., Oxy, Oxz and Oyz planes. Below we report examples 
with a = 1 (it does not affect the generality of the considerations) and b4 = 1 or b4 = 3, and we 
conclude that all produced curves are plane algebraic curves of degree 2, so each one curve is 
a hyperbola, a parabola or an ellipse. The type of the curve depends on the expression for the 
function ψ4 as follows: a) if ψ4(u) > 0 for all u, then we have an ellipse,  

b) if ψ4 has one zero, then we have a parabola,  
c) if ψ4(u) = 0 for two distinct values of u, then we have a hyperbola. 

If a = b4 = 1, then the task aiming to recognize the type of (a, b)-curve is dramatically 
simple: we have three parameters to be varied and the equation ψ4(u) = 0 turns into the system 
equations (in unknown b1, b2, b3):   
  –5  + 3b2 + 3b3 –b1 = 0, 3b2 + 3b3 – 7 + 2b1 + 3b2⋅b3 = 0, b3⋅(3b2 – b1⋅b3) – 2 = 0. 

We can use a computer algebra system (CAS), e.g., Derive 5 for Windows, to obtain 
solutions, (b1, b2, b3), they are  

(0, 1, 2/3), (1, 1, 1), (–5, 1, –1), (–1/3, 5/9, 1) and (α, (α+2)/3, 1), 
where α is an arbitrary real. One of these solutions, namely (1, 1, 1), identifies the point 
(1 : 1: 1 : 1), so we throw it out. The value α = –1/3 yields the fourth of the triples. Therefore 
all solutions we have are  
 (0, 1, 2/3), (–5, 1, –1), (α, (α+2)/3, 1).  (17)    

The situation remains similar if b4 is an arbitrary non-zero number. For instance, when 
b4 = 3, then the equation ψ4(u) = 0 yields the system:  

–15  + 3b2 + 3b3 –b1 = 0, –21 + 3b2 + 3b3 + 2b1 + b2⋅b3 = 0, b3⋅(9b2 – b1⋅b3) – 54 = 0. 
Its solutions, (b1, b2, b3), are  

(0, 3, 2), (–1, 5/3, 3), (3, 3, 3), (–15, 3, –3) and (β, (β+6)/3, 3), 
where β is an arbitrary real. Eliminating, as above, the non-acceptable triple (3, 3, 3) and the 
doubled point (–1, 5/3, 3) we finally have  
 (0, 3, 2), (–15, 3, –3), (β, (β+6)/3, 3).  (18)    
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Obviously, the solutions (17) and (18) are identical in P 3, namely they determine the 
points (0 : 3 : 2 : 1), (–5 :  1 : –1 : 1) and, substituting  β = 3α, the point (α : (α+2)/3 : 1 : 1). 

6 Examples of the visualization 
As it was said, below we have λ = –1 and a = 1, and we give some examples of resulting 
conics. In some examples we get the equations of planes in which these conics lay. 

 

Figure 6.1: Curves xy, xz and yz, traced in the standard Cartesian system Ohv and governed  by the equations 

(h, v) = (x(u), y(u)), (h, v) = (x(u), z(u)) and (h, v) = (y(u), z(u)), respectively,  when a = 1, b = ( 1: 1 : 2 : 3 ). On 

the hyperbola xy there are marked the points produced for chosen values of the parameter u sitting in the 

intervals (–∞, z1), (z1, z2) and (z2, +∞), namely u = –10 and –5, u = –3 and –1.7, u = –1.5, 0 and 10. L = (1/7, 1/7) 

stands for the limiting point, i.e., the point produced when u → z1 ≈ –3.51903 

6.1 First hyperbolic example 
For b = ( 1 : 1 : 2 : 3 ) we have ψ1(u) = u2 + 2u + 1,  ψ2(u) =   u2 +   4u  +  3,   

   (u) = u2 + 5u + 4,  ψ4(u) = 7u2 + 36u + 40. 
It results with the (a, b)-curve in R 3. In Oxyz system this curve is governed by the equation   

x(u) = 
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2
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uu
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45
2

2
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uu

uu
, 

where  u ∈ (–∞, z1) ∪ (z1, z2) ∪ (z2, +∞), z1 and z2 are zeros of the equation ψ4(u) = 0, 
i.e.,  

z1 = 
7

11218−−  ≈ –3.51903, z1 = 
7

11218+−  ≈ –1.62382.  

It is easy to notice (see Fig.6.1) that  
a. the (1, b)-curve passes through the origin O (for u = –1),  
b. it approaches the point (1/7, 1/7, 1/7) when u tends to both –∞ and +∞,  
c. the examination of the equation  

 A⋅ψ1(u) + B⋅ψ2(u) + C⋅ψ3(u) = D⋅ψ4(u)  (19)    
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gives that it can takes place only for D = 0; then A =1, B = –3, C = 2 and, 
consequently, it reveals that the curve (x, y, z) = ( x(u), y(u), z(u) ) lays in the 
plane x –3y +2z = 0, 

d. the triple ( x(u), y(u), z(u) ) tends to the infinity as u approaches the zeroes z1 and 
z2, namely the limit is ∞⋅(1, 1, –1), ∞⋅(–1, –1, 1), ∞⋅(–1, 1, 1) and ∞⋅(1, –1, –1) 
as u tends to z1 and to z2 from the left side and from the right side, resp.   

Points (1, 1, –1), (–1, –1, 1), (–1, 1, 1) and (1, –1, –1) may be interpreted as the vectors 
parallel to corresponding straight lines, and our (1, b)-curve is still closer and closer to these 
lines as the parameter u approaches the zeros z1 and z2. One can get an idea of this situation 
when looks at Fig.6.1.b. It shows the projections of our (1, b)-curve traced on the basic planes 
of the system Oxyz, i.e., on the planes Oxy, Oxz, Oyz. 
 

 

Figure 6.2: Hyperbolas xy, xz, yz governed by the equations (h, v) = (x(u), y(u)), (h, v) = (x(u), z(u)) and 

(h, v) = (y(u), z(u)) when a = 1, b = ( 1: 2 : 2 : 3 ). On the curve xy there are marked points obtained for u = –4, –

5, –10 and  u = 1, 5, 10, all they are taken from intervals (–∞, z1) and (z2, +∞). Points produced for 

u ∈ (z1, z2) ≈ (–2.63507, –2.31492) form the second arm of hyperbola xy, in Figure it is not out of the scope, its 

vertex is at the point appr. (–1635, –62.5) 

6.2 Second hyperbolical example 
For b = ( 1 : 10 : 2 : 3 ) we have a hiperbola described by equations 

x(u) = 
1229920
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where  u ∈ (–∞, z1) ∪ (z1, z2) ∪ (z2, +∞),  
z1 and z2 are zeros of the equation ψ4(u) = 0, i.e.,  

z1 = 
40

41299−−  ≈ –2.63507, z1 = 
40

41299+−  ≈ –2.31492.  

Now the combination (19) is the linear system  
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Its solution is  
707850

410474
,

235950
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 ,

353925

32512
DCDBDA ⋅−=⋅=⋅= , so the resulting curve lays in 

the plane 65024⋅x +920523 y –441047 z = 707850 (see Fig.6.2). 
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Figure 6.3a, b: The part of (1, b)-curve laying in the cube <–0.5, 0.5>2, where a = 1, b = (3:2:2:3), seen from two 

different points of observation 

6.3 Third hyperbolic example 
Setting b = ( 3 : 2 : 2 : 3 ) we have (1, b)-curve described by equations  
ψ1(u) = –2⋅(3u +7), ψ2(u) = –2⋅(u +2), ψ3(u) = 2⋅(u +2) = –r1(u),  ψ4(u) = 6⋅(2u2 + 11u +10). 
In R 3 it covers the hyperbola (see Fig.6.3) parametrized by u ∈ (–∞, z1) ∪ (z1, z2) ∪ (z2, +∞), 
where z1  ≈ –4.35078 and z2 ≈ –1.14921 are zeroes of ψ4.  
The combination (19) gives the system which is incompatible if D ≠ 0. For D = 0 its solution 
is (A, B, C)  = (0, B, B), where B is any non-zero real, so we get the equation y + z = 0. It says 
the (1, b)-curve lays in the plane y + z = 0. 

Let’s deal, for a moment, with arbitrary a ≠ 0 and, as above, with λ = –1 and 
b = ( 3 : 2 : 2 : 3 ). Now (19) yields the system  
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where α := 6⋅( a3 – 2a2 + 2a –1 ). The only real value a making the quantity α vanishes is 1. 
This is an other verification that it is enough to work for a = 1. 
6.4 Extremely simple hyperbolic example 
We act again with λ = –1 and a = 1. In the relation (15) for b = ( –1: 1:  1:  1) there is 

ψ1(u) = –4⋅(u2 + 4u + 3), ψ2(u) = –4⋅(u2 + 2u +  2) = ψ3(u) = ψ4(u), 
and the natural representation in R3 is (1, b)-curve governed by the equation   

x(u) = (u+3)/(u+1), y(u) = 1, z(u) = 1, u ∈ (–∞, –1) ∪ (–1, +∞). 
6.5 Elliptical example 
For b = (1: 2: –3: 1) we have ψ1(u) = –2⋅(15u2 +48u + 35), ψ2(u) = –2⋅(15u2 –9u –28),   
  ψ3(u) = –2⋅(15u2 +24u  –7), ψ4(u) = 2⋅(9u2 +30u +29) > 0, 
so the (1, b)-curve is an ellipse. The equation of this projection upon z = 0 is (see Fig.6.5) 

9140x2 + 1508x⋅y + 458y2 + 14277x + 4674y + 735 = 0. 
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Figure 6.5: Graphs v = x(h), v = y(h), where x(h) := 
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hh ,  y(h) := 

29309

28915
2

2

++
−−−

uu

uu , and the ellipse 

covered by the relation ( h = x(u), v = y(u) ), –∞ < u < +∞. There are also marked points btained for u = –10, –3, 

–2, 0, 10, 100 and the limiting point L = ( –5/3, –5/3) 

 
 

 
 

Figure 6.6: Projections of the parabola discussed in Example 6.6; as always, denotations xy, xz and yz stand for 

the projections of this curve upon the plane z = 0, y = 0 and x = 0, respectively 
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6.6 Parabolic example 
For b = ( 1 : 2 : 1 : 1) we obtain ψ1(u) = –2⋅(3u2 +12u +11), ψ2(u) = –2⋅(3u2 +7u +4),  
         ψ3(u) = –2⋅(3u2  + 8u  + 5), ψ4(u) = –6⋅(u +1)2,  
so the (1, b)-curve is a parabola. Solving (19) we find that it lays in the plane 2y – z = 1. 
Notice that it may be directly deduced from the parametric equations 

y(u) = 
)(ψ

)(ψ

4

2

u

u
 = 

)1(3

43

+⋅
+

u

u
,  z(u)  = 

)(ψ

)(ψ

4

3

u

u
 = 

)1(3

53

+⋅
+

u

u
, u ≠ 1. 

7 Conclusions and final remarks 
In the paper there are discussed curves defined by the condition (A, B; M, X) = λ, where A 
lays on a twisted cubic curve K in the projective space P 3, B does not, M runs the line AB, X 
completes the triple (A, B, M) of points to have the cross-ratio equal to a given number λ. 
There is obtained the explicit formula for these curves. It follows that they are conics for λ = –
1 and a couple of illustrative examples, produced with a CAS (Derive 5 from Texas 
Instruments, Inc., USA), are presented. There are still not recognized types of resulting curves 
for λ ≠ –1.  
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WIZUALIZACJA OBRAZÓW PROSTYCH W PEWNYM 
PRZEKSZTAŁCENIU REALIZOWANYM  ZA POMOC Ą 

DWUSTOSUNKU KORZYSTAJ ĄCA Z SYSTEMU ALGEBRY 
KOMPUTEROWEJ 

Niech K będzie krzywą przestrzenną rzędu trzeciego w przestrzeni rzutowej P 3 i niech 
M będzie dowolnym punktem tej przestrzeni nieleżącym na K. W wiązce prostych, której 
wierzchołkiem jest M, znajduje się dokładnie jedna bisekanta. Punkty, w których przecina ona 
krzywą K, oznaczamy przez T1 i T2. Tematem pracy jest zbadanie miejsc geometrycznych 
punktów X Î T1T2, dla których dwustosunek (T1, T2; M, X) = –1, gdy punkt M przebiega 
prostą, którą wyznaczają ustalone punkt krzywej K i punkt, który na K nie leży. Badanie 
to przeprowadzamy przy użyciu programu Derive 5 for Windows (Texas Instruments, Inc.). 
 
 


