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Abstract. LetK be a cubic curve in the projective spa@ and letT, and T, be points
determining a biseca T, of K. We fix a pointA onK and a poinB # A which does not lay
on K, and such tha®;T, # AB. We are interested in the set of poMtgenerated by the
equation Ty, Tq; M, X) = =1 whereM denotes the point at whichB meets the bisecaitT,.

So we consider the line congruence of order 1 dnclass 3 in the aspect of the harmonic
cross-ratio. We derive theoretic formulas for teeaf X ‘s and we go on in the harmonic case
— then the set oK's is a conic. We use the computer algebra systemv® 5 from Texas
Instruments, Inc., USA, to produce visualizatiohthe images of resulting curves.

Keywords: projective geometry, cross-ratio, conics, bisecastlalization, computer
algebra system

1 Basic notions on three-dimensional projective sga

As usually, P® denotes a real projective space of dimension juadruple
b=(by:by:bs:by) is the natural identification of aggular, usual) point in P3if by# 0,
and it is said to be @oint in the infinity if by =0. Numberd;, b, bs, by are called
homogeneous coordinatesf b. In the Cartesian spad®® the natural representation of
apointb=(by:by:bs:by) is the point Qi/bs, bo/bs, bs/bs), and a point by : by :bs: 0),
called adirection, can be seen as a direction of the vectar by, bs ]". For anyb, c O P> we
write b=c, and we sayp andc areequivalent, iff there exists a nonzero number(called
ahomogeneity multiplier) such thatb = A[G.

Any curve inP? can be described by the set of four equationsni \@riable. The
formulap(t) = (1 :t:t*:t3), wheret runs from < to +w, defines the spatial curve Rv. In
appropriately chosen coordinate system this fornddacribes thecubic curve it is an
example of a skew curve, we denote itkbgind we call it a&tandard, orreference curve.

A line congruencein P2, or acongruence of linesis defined as a two-parameter
family of lines inP 3. Here we deal with the (1, 3)-congruencéif) i.e., the line congruence
of order 1 and of class 3. In the terminology use@Grassmann varieties, we deal with the set
of all 1-dimensional subspaces of a projective sgdaimension 3. It says that

1) there is exactly one line congruence thases through an arbitrary pointRf,
2) in any plan®? there are exactly 3 lines belonging to the linegraence at hand.

The study of line congruences has been very pojultre turn of two last centuries
and it is still investigated all over the world ése.qg. [1], [2], [4]-[7]).

A line which cuts the given curve at exactly twante is called aisecant of this
curve. It was proved by Ernst Kummer in 1866 (aggroved in 1986 by Ziv Ran) that there
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are exactly two different types of (1,3)-congruencé) the congruence of bisecants to
a twisted cubic, 2) the congruence of lines meeéingvisted cubic and a bisecant to it, or
a degeneration of it. We consider the first of éhegses.

Let's take two distinct valueg, t,. They produce two distinct poinfg; := K(ty),
T, :=K(ty) sitting on the curv&. It is well-known (see, e.g. [3]) that the straidgihe T;To,
I.e., the line passing through poiftsand T is the bisecant of our twisted curke

2 Cross-ratio of four numbers and four points
As usual, aross-ratio, ordouble ratio, determined by distinct numbeasb, c, d is
@b cd=2"SP"9
a-d b-c

Usually its value is denoted Ry In the next we investigate in details the case—1.
Then we have so-calldthrmonic division and we deal with harmonic cross-ratio.

A cross-ratio of four pointsA, B, C, D, is defined by the same formula as that of four
numbers, but nova, b, c andd stand for the number identifiers of these pointshia local
coordinate system; usuallg,—b is the signed distance between poiAtandB. As in the

number case, the cross-ratio of points is denogd@d\|B; C, D).

3 Coordinates of the pointM
Let's take a poinA=K(@) = (1:a:a”:a°) and a poinB = (b1 : b, : bs:bs) 0K such that
the lineAB is not a bisecant &f. Next, let's take an arbitrary poilt on AB. We discuss the
line congruence of order 1, so there exists [3]c#yane bisecant df passing througi.
Let’s denote the points, at which this bisecargrsgctK, by T; ;= K(ty), T2 := K(tp).

Since the poinM = (my : my : Mg : my ) O T, Ty, So there exist reats, 3 such that

M = alT; + BT>. 1)
SinceM is different from botfl; andT,, soa? + B2 > 0. Therefore the equation (1) is
pn =a  +p
= + B3
ptm, =alf, +p, @)

plm, =al’ +BE,"
p m, =0‘[ﬂl3 +B[ﬂ23
wherep is a homogeneity multiplier. From two first equais of the system (2) we obtain

- -m, [t
:rn.l.[tz mZ[])’B:mZ n’ll ll]). (3)
-t t, -t
It shows than we can work on with= 1 and we have
- 2
g=mim,—m,m, p=mz|]n4 m, 4

mn,-m’  min,-m,’
where

S:=t; + 1, p:=tiih. (5)
In consequence, unambiguously to the numeratiorgete

S+ SN
2 )

A
5 ~,t, = (6)

t, =
where
Al:zsz_4p:(nmnrmﬂm)z—ﬂdmzﬁmz-gb)E!Jmlm—mz). )
(m, [, —m,”)
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Valuest; andt, produce point3; andT, laying onK. Substituting (5) in (3) we get the values
of coefficientsa, B and this way we have the pot= alT; + B[T>.

4 Finding the conjugate to given point to have théxed cross-ratio
The bisecanT;T, and the straight linAB # T; T, meet aM. Now we look for a poinK which
lays onT;T, and completes the tripldy T,, M) in such a way that pointE;, T,, M andX
form their cross-ratio equal to a given r&alThis four can be arbitrarily ordered, so thene ca
be two such points. First, we look f8r= (X; : X2 : X3 : X4) such that
(T, Ty M, X) = A, (8)

Taking into account tha¥l lays on the liné\B, the demand (8) gives that

plk =2ls  +B

plx, =rlald, +B0O,

p X, :M]“]f +B[ﬂ22

px, =rle 0’ +p0,’,
where p is an homogeneity multiplier, arg 3 are coefficients given by (3).
Taking into account the formulas (3) and (5) wewefollowing representation

pOq = (A-1)0py ~ (L+1) T O/A2
plXp = (A=1)0yp ~ (A +1)p /D5 | (10)
pOg=(1-1)0y3 - (L +1)ng /D
pOxg =(A-1)0yg - (A +1)[g /A2
where; ;= my[iy [ty — 3m0pig + 2mpliy iy,
W2 := mylinpliy — 2mplingliing + Myl s,
W3 1= 2mplinplig — Mgy —  myplis(ins,
Y4 := 3mpling[iy — 2mplingling — My [y [y,
Dg 1= (Mulfy —myle)® — Al — mgliing) [(my [fg — mp[iiny).
Therefore the above representation writes dowwolésifs
pht= (A - 1) - A + 1)m/a, , (11)
wherex, § andm stand for the vectors with componeRrtay; andm, respectively.
Now we look for the poinY such that

9)

(Tq, T2; Y, M) = 1. 12)
Proceeding analogously as above, we derive theseptation
Py = (A — 1) + (A + L)/, . (13)

We see that the representations of both poxasidy, differ only in the way in which
the second term is involved: in (11) it is subteactwhile in (13) it is added. For the harmonic
cross-ratio, i.e., whek = -1, the second term gives no shareyang.

Since now we continue our research witk —1. Then X =A and we have only one
pointX = (Xg : X2 : X3 : Xg) such that

Ty, T2y M, X) = -1. (14)
Taking into account the parametric representation,
M = All + B,

of the lineAB and combining all above we express the coordinaftése pointM in
terms of the coordinates Af B and bothT,, T,. This way we derive the relation
p=—-A, (15)
where ) = ;(u) are polynomials (of second degree in the varial)leiven by
formulas
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Py := {bs — 3aMs + 3°M, —a’By)} 0° + {2byB, +a’b,> — BB — J,bs
+ 6alB,® — 3°M, B, } @ + by (b B, — 30,0s) + 20,°,
W2 := alflbs — 3B; + 38°B, —a°B; } ° + {2bs((ab; —bs) + (abs + by) (D, + by)
— 4°6,03 } [ + byl{by By, + bylBs) + 2 by (B,
W3 := a’fbs — 3B + 3%, —a’b, }[0* + {2a°B,(ab, —bs)
— &°[B, + bs)[(albs + by) + 4albyb, } 0 + 20,70, — bsl(by By + bylbs),

P, :=a’by —6ab, + 3%M, + 3ab; —a’b, )U? +{3ab.[(ab, + bs — 2ab,)

b,l(by + 22°My) + 3a°MB,[B; } @ + bs(3b,B, — by B3) — 2b,°,

The curve governed by (15) will be referred toles durve 4, b)-adjoint to the line,
or, shortly,(a, b)-curve. The same terminology will be used for the natvepresentation of
this curve in the spade® embedded in the standard Cartesian coordinatersy@xyz i.e., it
will be used for the line described parametricalyfollows

AC RO RAC))
Y, Z) = , ) . 16
*¥.2 [\|I4(U) v, (u) y,(u) J (16)

5 Some remarks on the image of a straight line iR 3

Formula (15) reveals that the set of all poiktgenerated byl running the lineAB is an
algebraic curve i * of the 2nd degree. In consequence, its naturakseptation (16) iR >
determines an algebraic curve, and each componéh6) is a rational function of the degree
at most 2 in both nominator and denominator.

We undertake the task to recognize this representatVe will do it via the analysis
of its projection on basic planes, i.@xy, Oxz and Oyz planes. Below we report examples
with a = 1 (it does not affect the generality of the ¢desations) andb, = 1 orb, = 3, and we
conclude that all produced curves are plane algebuaves of degree 2, so each one curve is
a hyperbola, a parabola or an ellipse. The typd@icurve depends on the expression for the
functiony, as follows: a) iP4(u) > O for allu, then we have an ellipse,

b) if Y4 has one zero, then we have a parabola,
c) if Yy(u) = O for two distinct values af, then we have a hyperbola.

If a=b, =1, then the task aiming to recognize the typépb)-curve is dramatically
simple: we have three parameters to be variedtamdduationp,(u) = 0 turns into the system
equations (in unknowhy, by, bs):

5 ++B3-b1=0,+3B3—-7+ D+ b= 0,b313b2—b1[ﬂ3)— 2=0.

We can use a computer algebra system (CAS), eagiyédd5 for Windows, to obtain
solutions, by, by, bs), they are

©, 1, 2/3), (1, 1, 1), (-5, 1, -1), (-1/3, 5/9ahy €, (a+2)/3, 1),
wherea is an arbitrary real. One of these solutions, fan(E, 1, 1), identifies the point
(1:1:1:1), so we throw it out. The valoe= —1/3 yields the fourth of the triples. Therefore
all solutions we have are

©, 1, 2/3), (-5, 1, -1)p( (a+2)/3, 1). a7

The situation remains similarlify is an arbitrary non-zero number. For instance,rwhe
b, = 3, then the equatiap,(u) = 0 yields the system:

=15 + 3, + 33D =0,-21+ B, + 3z + 2b; + b3 = 0,b319b2—b1[ﬂ3) —54 =0.

Its solutions, Ify, b, bs), are

©, 3, 2), (-1, 5/3, 3), (3, 3, 3), (-15, 3, -3, (3+6)/3, 3),
wheref3 is an arbitrary real. Eliminating, as above, tla-acceptable triple (3, 3, 3) and the
doubled point (-1, 5/3, 3) we finally have

(©, 3, 2), (15, 3, =3)B( (B+6)/3, 3). (18)
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Obviously, the solutions (17) and (18) are iderttinaP 3, namely they determine the
points (0:3:2:1),(-5: 1:-1:1)and,sttinting B = 3, the point @ : (a+2)/3:1: 1).

6 Examples of the visualization
As it was said, below we have=-1 anda= 1, and we give some examples of resulting
conics. In some examples we get the equationsaokglin which these conics lay.

. . .1 . .

1]

la=1, b=(1:1:2:3)|

Figure 6.1: Curvesy, xz andyz traced in the standard Cartesian sys@nv and governed by the equations
(h, v) = (x(u), y(u)), (h,v) = (X(u), zZ(u)) and &, v) = (y(u), z(u)), respectively, whea=1,b=(1:1:2:3). On
the hyperbolaxy there are marked the points produced for chosenesabf the parametar sitting in the
intervals (o, z), (z, ) and &, +«), namelyu = -10 and -5y = -3 and -1.74 = -1.5, 0 and 1Q. = (1/7, 1/7)
stands for the limiting point, i.e., the point pueéd wheru - z =-3.51903

6.1 First hyperbolic example
Forb=(1:1:2:3)we hawgi(U) =u?+ 20+ 1, Po(u) = U+ 4 + 3,
(U) = U+ 5u + 4, Yu(u) = 7u + 36u + 40.
It results with thed, b)-curve inR 3. In Oxyzsystem this curve is governed by the equation

2 2 2
u“+2u+l uc+4u+3 uc+5u+4
Xu) = — DY) = — W) = — ,
7u”© +36u+40 7u“ +36u+40 7u© +36u+40
where u [ (-0, z1) 0 (z1, o) O (22, +0), z; andz, are zeros of the equatian(u) = 0,
le.,
7= sz/l_l =-3.519037 = w ~—-1.62382.

It is easy to notice (see Fig.6.1) that
a. the (1p)-curve passes through the origin(for u = -1),
b. it approaches the point (1/7, 1/7, 1/7) wheands to bothes and o,
c. the examination of the equation

Allp1(U) + Blpy(u) + Clip(u) = Dpa(u) (19)
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gives that it can takes place only fbr=0; thenA=1, B=-3,C=2 and,
consequently, it reveals that the curvey(z) = (x(u), y(u), z(u) ) lays in the
planex =3y +2z = 0,

d. the triple ((u), y(u), z(u) ) tends to the infinity as approaches the zeromsand
2, hamely the limit iso[(1, 1, —1),c0[(-1, -1, 1),00[(+1, 1, 1) and»((1, -1, -1)
asu tends ta and toz, from the left side and from the right side, resp.

Points (1, 1, -1), (-1, -1, 1), (-1, 1, 1) and-{,—1) may be interpreted as the vectors
parallel to corresponding straight lines, and dyib)-curve is still closer and closer to these
lines as the parametarapproaches the zerasandz. One can get an idea of this situation
when looks at Fig.6.1.b. It shows the projectiohewr (1,b)-curve traced on the basic planes
of the systen©xyz i.e., on the planeSxy, Oxz Oyz

la=1, b=(1:2:2:3)

Figure 6.2: Hyperbolaxy, xz yz governed by the equationé, ) = (x(u), y(u)), (h, v) = (x(u), z(u)) and
(h, v) = (y(u), zZ(u)) whena=1,b=(1:2:2:3). On the curwgy there are marked points obtained for —4, —
5, =10 and u=1, 5, 10, all they are taken from intervalso(z) and &, +»). Points produced for
ul (z, ) = (-2.63507, —2.31492) form the second arm of hyglarky, in Figure it is not out of the scope, its
vertex is at the point appr. (-1635, —62.5)

6.2  Second hyperbolical example
Forb=(1:10:2:3) we have a hiperbola describgdquations

26u® +5111+1943 26u® +167u+222 26u° +1651+554

X(u) = ,y Y(U) = y 4U) = )
) 20u® +9%u +122 YW 20u® +9%u +122 ) 20u® +99u+122
where u [ (-0, 1) U (71, 22) O (25, +0),
z andz are zeros of the equatign(u) =0, i.e.,
2= M =-2.63507z = M =_2.31492.
40 40
Now the combination (19) is the linear system
26 26 267 |A 20
511 167 222 (B =| 99 |D.
26 265 554 | |C 122
Its solution iISA= 32512 D, B= 30684 , C :LMED , SO the resulting curve lays in
35392¢ 23595( 70785(

the plane 6502% +920523y -441047z = 707850 (see Fig.6.2).



The Journal of Polish Society for Geometry and Begring Graphics
Volume 23 (2012), 11 - 19 17

z

L My

ya
i o

Figure 6.3a, b: The part of ())-curve laying in the cube <—0.5, 0%wherea = 1,b = (3:2:2:3), seen from two
different points of observation

6.3  Third hyperbolic example
Settingb=(3:2:2:3) we have (lh)-curve described by equations
Wa(u) = —2(Bu +7), Pa(u) = —20u +2), Pa(u) = 2u +2) = +1(u), Wa(u) = 62U + 11u +10).
In R* it covers the hyperbola (see Fig.6.3) parametrized O (-, z1) O (z1, 22) O (22, ),
wherez; =—-4.35078 and, =—1.14921 are zeroes f.
The combination (19) gives the system which is impatible ifD # 0. ForD = 0 its solution
is (A, B, C) =(0,B, B), whereB is any non-zero real, so we get the equajierz = 0. It says
the (1,b)-curve lays in the plang+z = 0.

Let's deal, for a moment, with arbitrarg# 0 and, as above, with =-1 and
b=(3:2:2:3). Now (19) yields the system

-14 -6[(3a*-6a°+2a+2) o [A 6a’[{a’-2a’+4a-1)
-4 -2[(3a’-20a’+17a-2) ala |B|=| 6{2a®+12a’-6a+3) |D,
4 -2[2a®-17a’*+20a-62) a’l | |C 60

wherea := 6[a*> - 2a° + 2a—1). The only real valua making the quantitgi vanishes is 1.
This is an other verification that it is enoughatork fora = 1.
6.4 Extremely simple hyperbolic example
We act again witih = -1 anda = 1. In the relation (15) fdy = (-1: 1: 1: 1) thereis
Pa(U) = —40° + 4u + 3),p(U) = —4QU" + 20+ 2) =Ws(u) = Wa(u),
and the natural representatiorRhis (1,b)-curve governed by the equation
X(u) = U+3)/(u+l),y(u) = 1,z(u) = 1,u 0 (—oo, =1)[J (-1, +e0).
6.5 Elliptical example
Forb = (1: 2: =3: 1) we havgs;(u) = —2{1L50% +48u + 35), Po(U) = —2{15u° —9u —28),
Pa(u) = —2050% +24u —7),Pa(u) = 209u? +30u +29) > 0,
so the (1p)-curve is an ellipse. The equation of this prag@cuponz = 0 is (see Fig.6.5)
9140¢ + 150&(y + 4587 + 1427% + 4674/ + 735 = 0.
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Figure 6.5: Graphy =x(h), v=y(h), wherex(h) := 15h? +4gn+35, y(h):= 1:%2-9u-28, and the ellipse
9h? +30h+29 9u? +30u+29

covered by the relationh(=x(u), v =y(u) ), -0 <u < +e0. There are also marked points btaineduer—10, -3,

-2, 0, 10, 100 and the limiting poibt= ( -5/3, —5/3)

Figure 6.6: Projections of the parabola discusseixample 6.6; as always, denotatioysxz andyz stand for
the projections of this curve upon the plare0,y = 0 andx = 0, respectively
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6.6 Parabolic example
Forb=(1:2:1:1)we obtai;(u) = —2(Bu” +12u +11), Pa(u) = —2([BU* +7u +4),
Pa(u) = —2BU + 8u + 5),Pg(u) = —6u +1Y,
so the (1b)-curve is a parabola. Solving (19) we find thatays in the plane yY—z=1.
Notice that it may be directly deduced from theapaetric equations
y(U) = vo(u) _ 3u+4 Au) = va(U) _ 3u+5 u
y,(u)  3Hu+)) y,(u)  3lu+l)

7 Conclusions and final remarks

In the paper there are discussed curves definetthdoyondition A, B; M, X) =A, whereA
lays on a twisted cubic cuntein the projective spade?, B does notM runs the lineAB, X
completes the tripleX, B, M) of points to have the cross-ratio equal to a gimemberA.
There is obtained the explicit formula for theseves. It follows that they are conics o= —

1 and acouple of illustrative examples, produceith va CAS (Derive 5 from Texas
Instruments, Inc., USA), are presented. There tdlest recognized types of resulting curves
for A #-1.
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WIZUALIZACJA OBRAZOW PROSTYCH W PEWNYM
PRZEKSZTALCENIU REALIZOWANYM ZA POMOC A
DWUSTOSUNKU KORZYSTAJ ACA Z SYSTEMU ALGEBRY
KOMPUTEROWEJ

Niech K tkedzie krzywa przestrzens rzedu trzeciego w przestrzeni rzutowej P 3 i niech
M bedzie dowolnym punktem tej przestrzeni nigleym na K. W wizce prostych, ktorej
wierzchotkiem jest M, znajduje esdoktadnie jedna bisekanta. Punkty, w ktérych preeona
krzywa K, oznaczamy przez T1 i T2. Tematem pracy jestddabhagé miejsc geometrycznych
punktéw X T T1T2, dla ktérych dwustosunek (T1, ™; X) = —1, gdy punkt M przebiega
prost, ktdra wyznaczaj ustalone punkt krzywej K i punkt, ktéry na K niezy. Badanie
to przeprowadzamy przyzyciu programu Derive 5 for Windows (Texas Instrumseinc.).
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