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INTRODUCTION

Food Recognition plays a signifi cant role in 
one’s life, as it helps to know what to expect 
from diff erent food items. It also refl ects in the 
digital world; there are many services online 
which depend on food categorization. For In-
stance, Food recognition can help patients to 
calculate their calorie intake daily. Also, this 
enables food distribution companies to catego-
rize food items and manage their delivery ac-
cordingly. However, most current solutions rely 
on nutrition experts [5] or Amazon Mechanical 
Turk [6] to label various dishes.

It is a challenging problem to categorize food 
items, as food does not have many discriminative 
features. The distinguishing characteristics in the 
food items are apparently hidden. For Example, 
Humans can be distinguished by the appearance 
of their face and body as these characteristics can 
be clearly compared. Consider a case of a mixed 

salad; such patterns associating ingredients can-
not be found. Further, the nature of food often 
diff ers based on various textures and colors of 
its diff erent local ingredients. Thus, Food recog-
nition is a particular classifi cation task requiring 
models that are able to exploit local components. 
Many previous works used diff erent types of fea-
ture mining to build a good categorization model. 
Some of the works relied on weak supervised 
models such as Random Forests [7, 8] and oth-
ers adopted discriminative mining of mid-level 
components [9-16]. This work relies on building 
a powerful model by using transfer learning. 

In recent days, convolutional neural net-
works like VGGNET [2], RESNET [3], and 
EFFICIENTNETS [4] have shown a signifi cant 
impact in the area of visual recognition. How-
ever, these state-of-art architectures require enor-
mous amounts of data for training. Training the 
model with fewer data may lead to overfi tting, 
and the model will not be generalized. However, 
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obtaining vast amounts of data is a complex task. 
To tackle this issue, In this work, Transfer learn-
ing is adopted. Transfer learning is nothing but 
using pre-trained weights from some state-of-the-
art architectures, which are trained on benchmark 
datasets like IMAGENET [17], COCO [18]. 
Transfer learning can be used either as a feature 
extractor [19-21] or by unfreezing some layers 
by fine tuning [22, 23] the model, which involves 
altering the learning rate. Due to these advan-
tages, extensive works were done on understand-
ing transfer learning [28, 29]. In this paper, as the 
problem of food recognition is being dealt with, 
architectures that were pre-trained on IMAGEN-
ET [17] are used via fine-tuning as the similarity 
between IMAGENET [17] and the dataset [26] 
being used is high when calculated using a metric 
called earth mover’s distance [24, 25]. The later 
sections of this work are organized as follows. 
The details of the dataset [26] used in this paper 
are described in section 2. Methodology, Experi-
ments & Environment setup, results are described 
in sections 3, 4, and 5, respectively. In the end, 
Section 6 concludes this work.

DATASETS

In this paper, we are using a dataset collected 
by Lukas Bossard et al. [26], where they have 
chosen images for a total of 101 popular dishes. 
This dataset consists of 750 training images and 

250 test images for each class, amounting to a 
sum of 101’000 real-world images. Training im-
ages are not cleaned and contain some level of 
noise, mainly in the form of bright colors and in-
correct labels. This is done on purpose to build a 
robust Deep learning algorithm that can be able 
to work on such weakly labeled images and scale 
up as the number of classes to be recognized in-
creases. Images were scaled to have a side length 
of utmost 512 pixels. The dataset includes very 
diverse but also semantically and seemingly 
similar food classes. These images are collected 
by downloading images from foodspotting.com, 
which enables users to capture images of the food 
they are eating and also add information such as 
type of food and place online. So, this dataset pro-
vides us with an opportunity to work with real-
world food images. Some of the Random images 
from the dataset are shown in Figure 1.

METHODOLOGY

Data Augmentation and Visualization

Initially, as we will be dealing with the ar-
chitectures which favor the images in resolution 
(224, 224, 3), we have resized the images into 
those dimensions. As the Architectures VGGNET 
[2] and RESNET [3] do not contain any Normal-
ization layers in them, we have normalized the 
images before feeding them to these networks. 

Fig. 1. Shows some random images from the dataset
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In contrast, EFFICIENTNET Family has a Nor-
malization layer included in it, so we have fed 
the raw resized images to EFFICIENTNET. 
Data Normalization is a technique of Rescaling 
the pixels in the image to be in the range of 0 to 
1; this is because neural networks prefer all the 
Data Points being fed to them on the same scale. 
Normalization is done as shown in Eq. (1), where 
xscaled denotes the normalized image and x denotes 
the image which we are normalizing, xmin denotes 
the smallest pixel in the image, and xmax denotes 
the largest pixel in the image.

𝑥𝑥𝑥𝑥scaled =
𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
 (1)

As images of Food items do not contain rich 
spatial information like other types of image 
Data like faces, animals to make our model more 
accurate in the time of testing, we have generated 
various types of new images in the training Data 
set with the help of Data augmentation. Some 
of the augmentation techniques we used include 
Flipping images horizontally, rotating the imag-
es by some random angle, increasing the width 
and height of the images randomly, and finally 
zooming some of the images Randomly.

Model Architectures

VGGNET

VGGNET was first introduced in the year 
2014. It has secured first place in the task of lo-
calization and second place in classification in the 
IMAGENET challenge, which was conducted that 
year. This architecture was built by a team called 
the visual geometry group from the oxford uni-
versity. One of the very interesting aspects of this 
network is that all the parameters are constant, 
except the depth dimension in the filters, which 

is gradually increased with the depth of the net-
work. Many variants of VGGNET networks are 
proposed by the visual geometry group, whose 
basic idea remains the same and differs in terms of 
the number of layers. In our work, we have experi-
mented with VGG19 to train our model and the re-
sults obtained are promising, which are shown de-
tailly in section 5. The hierarchy of the model is as 
follows: To simplify the explanation, we explain 
the model in terms of blocks, where each block 
is separated by a Maxpool layer. Firstly, VGG16 
starts with an input layer that feeds the model with 
images in batches. Block1 consists of two convo-
lutional layers, each containing a filter size of 64 
and a kernel_size of 3X3. As explained above, the 
features extracted by these two convolutional lay-
ers are subjected to the Max Pooling layer, where 
the most important features are captured. Block2 
consists of two convolutional layers, each contain-
ing 128 filters, followed by Block3, which consists 
of three convolutional layers containing 256 fil-
ters each. Block4 and Block5 both consist of three 
convolutional layers with a filter size of 512. As 
mentioned earlier, all these Blocks are separated 
by a max-pooling layer, and all the other param-
eters remain constant throughout the network. The 
architectures of VGG16 and VGG19 are shown in 
Figure 3 and Figure 4.

RESNET

This architecture was built by a group of re-
searchers from Microsoft. Its primary idea was 
to ease the complexity of training deep convo-
lutional neural networks; this was proved by the 
fact even though it was eight times as large as 
VGGNET and yet had a lower complexity. An-
other important achievement is that this network 
solved the problem of degrading training and test-
ing error rates with an increase in the number of 
stacked layers by mapping features to a Residual 

Fig. 2. Representation of VGG19 Architecture
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function and using shortcut connections between 
the layers. These observations and proofs are 
explained in a detailed and clear way in their 
paper [3]. We have used RESNET with 152 lay-
ers which were trained on the IMAGENET with 
fine-tuning, and the results obtained were very 
good. To understand the architecture, let us use 
the terminology of blocks which we used while 
explaining VGGNET; the architecture starts with 
a convolutional layer with a kernel size of 7X7 
with stride 2 consisting of 64 filters and then fol-
lowed by a Maxpool layer with a pool size of 
3X3 and a stride of 2. Block 1 starts with con-
volutional layers where the first consists of 64 
filters with a kernel_size of 1X1 and the second 
consists of 64 filters with a kernel size of 3X3. 
Finally, the third one will have 256 filters with a 
kernel size of 1X1; this hierarchy repeats a total 
of 3 times, so Block 1 contains a total of 9 layers. 
Block2 begins with a convolutional layer with a 
filter size of 128 and a kernel size of 1X1, fol-
lowed by another with a filter size of 128 and a 
kernel size of 3X3, then by another with a kernel 
size of 1X1 and 512 filters; this pattern repeats 
eight times which in total produces 24 layers in 
block2. Block 3 starts with a kernel size of 1X1 
and 256 filters, which is then followed by a layer 
of kernel size 3X3 consisting of a total of 256 
filters and the third, which is similar to that of the 
first one except that the number of filters is 1024, 
this order repeats for 36 times thus block3 itself 
contains 108 layers of the architectures’152 lay-
ers. At last, Block4 follows the pattern of a 1x1 
kernel size with 512 filters, 3X3 kernel size With 
512 filters, and a 1X1 kernel size with 2048 fil-
ters which is repeated a total of 3 times. Finally, 
the feature maps obtained are subject to a Global 
Average pooling layer and connected to a dense 
layer with softmax as the activation function. 

Efficient-Net-Family

This was developed by the Google Ai re-
search team. In this work [4], they have shown 
how effective a model can be built if the net-
work’s depth, width, and resolution are balanced 
using a simple compound coefficient. This com-
pound is very simple but very effective; suppose 
if we want to utilize 2^N times more computa-
tional power, then we can simply increase the net-
work’s width by W^N and height by H^N, and the 
input image size by S^N. The idea is very logical 
because if the input size of the image is increased, 
we have to increase filter size to extract more fea-
ture maps and increase the depth to obtain more 
receptive field; in simple words, the important as-
pects like depth, width, resolution are uniformi-
zed in a constant ratio, and these set of models 
from Efficient-Family are far more efficient and 
faster than most of the architectures proposed till 
date. The two main observations found in this 
work [4] is that scaling up any one of the dimen-
sions that are width, depth, the resolution will 
increase the model’s accuracy. Still, this rate of 
increase diminishes after a while. Another obser-
vation is that in order to obtain good accuracy and 
efficiency, it is essential to balance all the dimen-
sions width, depth, and resolution of the model 
architecture. The baseline architecture of EFFI-
CIENTNET follows the pattern as follows, let 
us understand the architecture in terms of blocks 
as we did with previous architectures. Firstly 
Block1 contains a Convolutional layer with a 
kernel size of 3X3 consisting of 32 channels; 
Block2 contains a mobile inverted bottleneck 
convolutional layer with a kernel size of 3X3 
and 16 filters. Block3 consists of two mobile 
inverted bottleneck convolutional layers with 
a kernel size of 3X3 and 24 filters. Similarly, 
Block 4 contains two mobile inverted bottleneck 

Fig. 3. Representation of RESNET-152 Architecture
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convolutional layers with a kernel size of 5X5 
and 40 filters. Block 5 consists of three mobile 
inverted bottleneck convolutional layers, each 
with a kernel size of 3X3 and 80 filters. Block 
6 contains three mobile inverted bottleneck con-
volutional layers, each with a kernel size of 5X5 
and 112 filters. Block 7 consists of four mobile 
inverted bottleneck convolutional layers, each 
with a kernel size of 5X5 and 192 filters. Block 
8 contains a mobile inverted bottleneck convo-
lutional layer with a kernel size of 3X3 and 320 
filters. Block 9 consists of a convolutional layer 
with a kernel size of 1X1 and a Pooling layer, 
FC layer with 1280 filters. The components W, 
H, S are then fixed as constants, and the baseline 
model is scaled up to build a family of models 
EFFICIENT B1 to EFFICIENT B7.

Domain similarity

Consider there is a source domain S and a tar-
get domain. The distance separating two images, 
s ∈ S and t ∈ T, is defined as the Euclidean dis-
tance between their feature representations: 

𝑑𝑑𝑑𝑑(𝑠𝑠𝑠𝑠, 𝑡𝑡𝑡𝑡) =∥ 𝑔𝑔𝑔𝑔(𝑠𝑠𝑠𝑠) − 𝑔𝑔𝑔𝑔(𝑡𝑡𝑡𝑡) ∥ (2)

Where g(·) denotes the feature extractor for 
an image, to better calculate the similarity be-
tween the images, the feature extractor g(·) needs 
to extract high-level information from images in 
an unbiased and generic way. As a result, In this 
work, we are using g(.) as the extracted features 
from the last before the layer of a RESNET-101 
trained on the JFT dataset. Here, g(s) and g(t) 
denote the feature extractor for an image on the 
source and target datasets, respectively.

In many cases, better transfer learning perfor-
mance can be achieved by using more images. For 
the purpose of simplicity, in this study, we ignore 

the effect of domain scale (number of images). In 
particular, we normalize the number of images in 
both the source and target domain. As examined 
by some previous works, transfer learning per-
formance increases logarithmically with training 
data. This suggests that the performance increase 
in transfer learning emanating from more training 
data would be unimportant when we already have 
a large enough dataset (e.g., ImageNet). There- 
fore, ignoring the domain scale is a reasonable as-
sumption that simplifies the problem. Our defini-
tion of domain similarity can be generalized to take 
domain scale into account by adding a scale factor. 
However, we found that ignoring the domain scale 
already works well in practice.

Under this hypothesis, transfer learning can 
move images from the source domain S to the tar-
get domain T. The image distance Eq. 1 can be de-
fined as the work done by transferring an image to 
another. Then, the distance between two domains 
can be defined as the least amount of total work 
needed. Earth Mover’s Distance (EMD) is used to 
calculate domain similarity as per this definition.

To make the calculations more manageable, 
further simplifications can be made by repre-
senting all image features in a category. This is 
achieved by computing the mean of their features. 
Consider, the source domain 𝒮𝒮𝒮𝒮 = ��𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖,𝑤𝑤𝑤𝑤𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖��𝑖𝑖𝑖𝑖=1

𝑚𝑚𝑚𝑚
  

and target 𝒯𝒯𝒯𝒯 = ��𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗,𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗��𝑗𝑗𝑗𝑗=1
𝑛𝑛𝑛𝑛

 . Earth Mover’s 
Distance(EMD) can be calculated using the equa-
tion as shown below where fi,j denotes the data 
point from source domain whereas di,j denotes 
that of a target domain; m is the number of data 
points in the source domain, and n denotes the 
number of data points in the target domain.

𝑑𝑑𝑑𝑑(𝒮𝒮𝒮𝒮,𝒯𝒯𝒯𝒯) = EMD(𝒮𝒮𝒮𝒮,𝒯𝒯𝒯𝒯) = 

=
∑  𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1,𝑗𝑗𝑗𝑗=1 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗
∑  𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1,𝑗𝑗𝑗𝑗=1 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗

 

 

(3)

Fig. 4. Representation of EFFICIENTB0 Architecture
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Prefetching, multithreading, and 
mixed precision-scaling

These concepts come from the core of com-
puter science, and these are not at all related to 
any of the deep learning or machine learning al-
gorithms. However, these play an important role 
in the training process of the algorithm by speed-
ing up the process up 3 to 4 times the actual time 
required. If the model is being trained without 
prefetching, firstly, the CPU prepares a batch of 
input, and then the GPU computes it, and after 
that, the CPU again prepares another batch, and 
the GPU performs computations. In contrast, if 
prefetching is applied, the CPU will simultane-
ously prepare the batch of data while the GPU 
is computing the present batch; in this way, the 
GPU will be completely utilized except for the 
time of transferring the data from CPU to GPU. 
The process can be speeded up a lot more if we 
can ensure that prefetching and preparing the data 
is multithreaded. These three different types of 
processes are illustrated pictorially in Figure 5. 

Mixed precision scaling is nothing but using 
tensors that are of both 16 bit and 32 bit. In order to 
maintain stability, the outer layers of the model are 
maintained as 32-bit float data type while the inner 
layers are maintained as 16-bit float data type. This 
drastically increases the performance because a 
16-bit data type takes significantly less space than 
a 32 bit but lacks stability. Thus by using mixed 
precision scaling, we can leverage both the pros 
and train the model much faster than actual.

EXPERIMENTS AND 
ENVIRONMENT SETUP

Firstly, the dataset [26] was collected using 
the TensorFlow data API; as the amount of data 
that we are dealing with is huge, normally, train-
ing the model will not be that feasible. So as men-
tioned in the methodology section Prefetching, 
multithreading, and mixed precision-scaling, we 
have followed some advanced techniques to train 
the model. When it comes to hardware, an Intel i7 
processor with a ram of 16GB and a Tesla T4 GPU 
with VRAM of 16GB was used to train all the 
architectures that we have used in this work. As 
EFFICIENTNET family already consists of a res-
caling layer embedded in them, it is not required 
to manually rescale the image. As we have lev-
eraged the power of transfer learning, firstly, we 
have experimented with EfficientnetB0 by freez-
ing all the layers except the output layer, which 
is a fully connected layer with 101 neurons and 
softmax as an activation function as we are deal-
ing with multiclass classification. The mathemati-
cal formulation of softmax is shown in the Eq. 4, 
where xi denotes the input vector, and xj denotes 
the output vector; finally, the model was compiled 
with adam [27] optimizer with a learning rate of 
0.001 with sparse_categorical_cross_entropy as 
loss function. Then the model was fine-tuned as 
suggested by other previous works [28, 29], as 
the amount of training data was very high, all the 

Fig. 5. Representation of prefetching and multithreading
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layers in the pretrained EFFICIENTNET were 
fine-tuned with a reduced initial learning rate of 
0.0001; also, the learning rate was reduced by a 
factor of 5 once the loss function stops reducing 
for at least 2 epochs and this reduction of learning 
will not go below 0.0000001.

Softmax (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) =
exp(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖)

∑  𝑗𝑗𝑗𝑗 exp �𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗�
 (4)

The same training pattern was followed to train 
and fine-tune the RESNET-125, VGG19 architec-
tures with the dataset [26] except that these models 
do not have an rescaling layer embedded in them, 
we have manually rescaled the batch of images be-
fore feeding them to the model. The mathematical 
formulation of Rescaling is shown in the Eq. 1.

RESULTS

Of all the models used, EFFICIENTNET gave 
the best results with an accuracy of 80%, which is 
the best of all the architectures used, in terms of 
both accuracy and efficiency with only 11 million 

parameters. When it comes to RESNET-152, the 
accuracy achieved is almost close to 80% (79.9%). 
But in terms of efficiency and amount of time re-
quired to train the model, EFFICIENTNET is 
much better than RESNET-152 as the number of 
parameters in RESNET-152 is 60 million which is 
about 6 times that of in EFFICIENTNET. VGG-19 
is the worst performing among all the models, with 
an accuracy of 74%. Moreover, the time required 
to train and resource consumption is higher relative 
to other models as the number of parameters is 144 
million, which is double that of in RESNET-152 
and around 13 times that of in EFFICIENTNET. 
The training and validation errors of all these ar-
chitectures are shown in the below figures.

The accuracy we have obtained by fine-tun-
ing EFFICIENTNET and RESNET is better than 
most previous works [26, 30]. To the extent of our 
knowledge, the paper by Liu et al. [30] has a top 
1% accuracy of 77.4%, which we have successful-
ly beaten in our work by applying the techniques 
of transfer learning and fine-tuning on the archi-
tectures EFFICIENTNETB0 and RESNET-152, 
which were trained on IMAGENET dataset. 

Fig. 6. Accuracy and Loss functions of VGGNET

Fig. 7. Accuracy and Loss functions of RESNET
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CONCLUSION

In conclusion, By using transfer learning, that 
is, by utilizing pre-trained weights via fine-tuning of 
some popular architectures such as RESNET, VGG-
NET, and EFFICIENTNET, the results obtained are 
better than most of the previous studies to the extent 
of our knowledge. Leveraging the power of transfer 
learning, we can build robust models by finding the 
right target dataset using domain similarity based 
on the source dataset and using standard architec-
tures trained on this source dataset. Further studies 
can include building a larger dataset by adding more 
images in each category, also involving numerous 
categories, and building a robust model which is 
specialized in food categorization.

Moreover, we have performed fine-tuning 
manually. However, as an extension, we can 
make studies on how to dynamically unfreeze the 
layers based on the image fed to the network rath-
er than manually unfreezing some of the layers 
while fine-tuning, as layers are unfrozen dynami-
cally for each specific image due to which if the 
pre-trained model has never seen the image, the 
top layers will be unfrozen and if the pre-trained 
model has already seen similar image then bot-
tom layers are unfrozen; as a result, the perfor-
mance of the model improves by a great extent.
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