PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impedance spectroscopy in H2 sensing with TiO2/SnO2 nanomaterials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Alternating current a.c. measurements enable to understand the physical and chemical processes occurring in semiconductor materials. Impedance spectroscopy has been successfully applied to study the responses of gas sensors based on metal oxides, such as TiO2, SnO2 and TiO2/SnO2 nanocomposites. This work is devoted to dynamic measurements of hydrogen sensor behaviour over the temperature range of 300-450°C. Frequency dependence of the impedance signal gives evidence that 50 mol% TiO2/50 mol% SnO2 nanocomposites should be treated as resistive-type sensors. Temporal evolution of the response to 500 ppm H2 at 320°C indicates a very short response time and much longer recovery.
Rocznik
Strony
417--425
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] Schipani, F., Miller, D.R., Ponce, M.A., Aldao, C.M., Akbar, S.A., Morris, P.A. (2016). Electrical Characterization of Semiconductor Oxide-Based Gas Sensors Using Impedance Spectroscopy: A Review. Reviews in Advanced Sciences and Engineering, 5(1), 86-105.
  • [2] Macdonald, J.R., Barsoukov, E. (2005). Impedance Spectroscopy: Theory, Experiment, and Applications. Hoboken: John Wiley & Sons, Inc.
  • [3] Aguir, K., Labidi, A., Lambert-Mauriat, C. (2006). Impedance spectroscopy to identify the conduction mechanisms in WO3 sensors. Sensors, 267-270.
  • [4] Lacz, A., Grzesik, K., Pasierb, P. (2019). Electrical properties of BaCeO3-based composite protonic conductors. Journal of Power Sources, 279, 80-87
  • [5] Lyson-Sypien, B., Kusior, A., Rekas, M., Zukrowski, J., Gajewska, M., Michalow-Mauke, K., Graule, T., Radecka, M., Zakrzewska, K. (2017). Nanocrystalline TiO2/SnO2 heterostructures for gas sensing. Beilstein J. Nanotechnology, 8, 108-122.
  • [6] Al-Hardan, Naif H., Aziz, A.A., Abdullah, M.J., Ahmed, N.M. (2018). Conductometric Gas Sensing Based on ZnO Thin Films: An Impedance Spectroscopy Study. ECS Journal of Solid State Science and Technology, 7(9), 487-490.
  • [7] Shahkhatunia, G.H., Aroutiouniana, V.M., Arakelyana, V.M., Aleksanyana, M.S., Shahnazaryana, G.E. (2019). Investigation of Sensor Made of ZnO:La for Detection of Hydrogen Peroxide Vapours by Impedance Spectroscopy Method. Journal of Contemporary Physics, 54(2), 188-195.
  • [8] Radecka, M., Kusior, A., Lacz, A., Trenczek-Zajac, A., Lyson-Sypien, B., Zakrzewska, K. (2012). Nanocrystalline TiO2/SnO2 for gas sensors. Journal of Thermal Analysis and Calorimetry, 108(3), 1079-1084.
  • [9] Zeng, W., Liu, T., Wang, Z. (2010). Sensitivity improvement of TiO2- doped SnO2 to volatile organic compounds. Physica E: Low-dimensional Systems and Nanostructures, 43(2), 633-638.
  • [10] Carotta, M.C., Gherardi, S., Guidi, V., Malagù, C., Martinelli, G., Vendemiati, B., Sacerdoti, M., Ghiotti, G., Morandi, S. (2009). Electrical and spectroscopic properties of Ti0:2Sn0:8O2 solid solution for gas sensing. Thin Solid Films, 517(22), 6176-6183.
  • [11] Radecka, M., Zakrzewska, K., Rekas, M. (1998). SnO2-TiO2 solid solutions for gas sensors. Sensors and Actuators B: Chemical, 47(1-3), 193-199.
  • [12] Gwiżdż, P., Brudnik, A., Zakrzewska, K. (2015). Hydrogen Detection With a Gas Sensor Array - Processing and Recognition of Dynamic Responses Using Neural Networks. Metrology and Measurement Systems, 22(1), 3-12.
  • [13] Suchorska-Woźniak, P., Rac, O., Fiedot, M., Teterycz, H. (2016). The Impact of Sepiolite on Sensor Parameters during the Detection of Low Concentrations of Alcohols. Sensors, 16(11), 1881.
  • [14] Kusior, A., Radecka, M., Zych, Ł., Zakrzewska, K., Reszka, A., Kowalski, B.J. (2013). Sensitization of TiO2/SnO2 nanocomposites for gas detection. Sensors and Actuators B: Chemical, 189, 251-259.
  • [15] Carney, C.M., Yoo, S., Akbar, S.A. (2005). TiO2-SnO2 nanostructures and their H2 sensing behavior. Sensors and Actuators B: Chemical, 108, 29-33.
  • [16] Van Duy, N., Van Hieu, N., Huy, P.T., Chien, N.D., Thamilselvan, M., Yi, J. (2008). Mixed SnO2/TiO2 included with carbon nanotubes for gas-sensing application. Physica E: Low-dimensional Systems and Nanostructures, 41(2), 258-263.
  • [17] Hübner, M., Pavelko, R., Kemmler, J., Barsan, N., Weimar, U. (2009). Influence of material properties on hydrogen sensing for SnO2 nanomaterials. Procedia Chemistry, 1(1), 1423-1426.
  • [18] Yamazoe, N. (2005). Toward innovations of gas sensor technology. Sensors and Actuators B: Chemical, 108(1-2), 2-14.
  • [19] Lide, D.R. (2004). CRC Handbook of Chemistry and Physics. 85, CRC press.
  • [20] Lyson-Sypien, B., Radecka, M., Rekas, M., Swierczek, K., Michalow-Mauke, K., Graule, T., Zakrzewska, K. (2015). Grain-size-dependent gas-sensing properties of TiO2 nanomaterials. Sensors and Actuators B: Chemical, 211, 67-76.
  • [21] Hsu, C.S., Mansfeld, F. (2001). Concerning the Conversion of the Constant Phase Element Parameter Y0 into a Capacitance. Corrosion, 57(9), 747-748.
Uwagi
EN
1. This work has been financed by the Polish National Center of Science, NCN, grant decision no. 2016/23/B/ST7/00894.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92c5d57b-696a-4d9f-89c0-9ccd4d3c5662
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.