PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Plastic flow of metals under cyclic change of deformation path conditions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Reverse dislocation slip in metal, forced by cyclic change of deformation path (loading scheme), causes localized plastic flow with formation of dislocation dipoles which subsequently collapse leading to high concentration of point defects. Very low migration energy of point defects, especially self-interstitial atoms, indicating low bonding in a crystal lattice, favors low plastic flow viscosity which in turn leads to low flow stress and high plasticity (superplasticity) of metal. This paper presents the experimental results of KOBO extrusion and KOBO complex rolling, at low (room) temperature. The first method was used to produce thin wires made of MgLi4 magnesium alloy (extrusion ratio […]), and fully compacted wires made of AZ91 magnesium alloy in the form of machining chips. Basing on the second method, it has been proved possible to change the mechanical properties of strips made of 7075 aluminum alloy without any reduction in their thickness.
Rocznik
Strony
679--686
Opis fizyczny
Bibliogr. 35 poz., fot., rys., wykr.
Twórcy
autor
  • AGH – University of Science and Technology, Faculty of Non-Ferrous Metals, A. Mickiewicza Av. 30, 30-059 Cracow, Poland
autor
  • AGH – University of Science and Technology, Faculty of Non-Ferrous Metals, A. Mickiewicza Av. 30, 30-059 Cracow, Poland
  • AGH – University of Science and Technology, Faculty of Non-Ferrous Metals, A. Mickiewicza Av. 30, 30-059 Cracow, Poland
autor
  • AGH – University of Science and Technology, Faculty of Non-Ferrous Metals, A. Mickiewicza Av. 30, 30-059 Cracow, Poland
Bibliografia
  • [1] N. Hashimoto, T.S. Byun, K. Farrell, S.J. Zinkle, Deformation microstructure of neutron-irradiated pure polycrystalline metals, J. Nucl. Mater. 329–333 (2004) 947–952.
  • [2] Y. Dai, M. Victoria, Defect structures in deformed f.c.c. metals, Acta Mater. 45 (8) (1997) 3495–3501.
  • [3] M. Kiritani, Design of experiments on production and reaction of point defects, Radiat. Effects Defects Solids 148 (1–4) (1999) 233–267.
  • [4] V.V. Malashenko, Dynamic instability of dislocation motion at high-strain-rate deformation f crystals with high concentration of point defects, Phys. Solid State 57 (12) (2015) 2461–2463.
  • [5] M. Reyes, R. Voskoboinikov, M.A. Kirk, H. Huang, G. Lumpkin, D. Bhattacharryya, Defect evolution in a Ni–Mo–Cr–Fe alloy subjected to high-dose Kr ion irradiation at elevated temperature, J. Nucl. Mater. 474 (2016) 155–162.
  • [6] Y. Satoh, Y. Abe, H. Abe, Y. Matsukawa, S. Kano, S. Ohnuki, N. Hashimoto, Vacancy effects on one-dimensional migration of interstitial clusters in iron under electron irradiation at low temperatures, Philos. Mag. 96 (21) (2016) 2219–2242.
  • [7] Y. Chen, N. Gao, G. Sha, S.P. Ringer, M.J. Starink, Strengthening of an Al–Cu–Mg alloy processed by high-pressure torsion due to clusters, defects and defect-cluster complexes, Mater. Sci. Eng. A627 (2015) 10–20.
  • [8] M. Kiritani, Y. Satoh, Y. Kizukka, K. Arakawa, Y. Ogasawara, S. Arai, Y. Shimomura, Anomalous production of vacancy clusters and the possibility of plastic deformation of crystalline metals without dislocations, Philos. Mag. Lett. 79 (10) (1999) 797–804.
  • [9] K. Arakawa, K. Ono, M. Iseki, M. Kiritani, Elongation fracture of metals containing pre-introduced secondary defects, Radiat. Effects Defects Solids 157 (1–2) (2002) 25–30.
  • [10] M. Kiritani, K. Yasunaga, Y. Matsukawa, M. Komatsu, Plastic deformation of metal thin films without involving dislocations and anomalous production of point defects, Radiat. Effects Defects Solids 157 (1–2) (2002) 3–24.
  • [11] H. Ohkubo, Y. Shimomura, I. Mukouda, K. Sugio, M. Kiritani, Formation of vacancy clusters in deformed thin films of Al– Mg and Al–Cu dilute alloys, Mater. Sci. Eng. A350 (1–2) (2003) 30–36.
  • [12] Y. Matsukawa, K. Yasunaga, M. Komatsu, M. Kiritani, Dynamic observation of dislocation-free deformation process in Al, Cu, and Ni thin foils, Mater. Sci. Eng. A350 (1–2) (2003) 17– 24.
  • [13] A. Korbel, W. Bochniak, P. Ostachowski, L. Błaż, Visco-plastic flow of metal in dynamic conditions of complex strain scheme, Metall. Mater. Trans. A42 (9) (2011) 2881–2897.
  • [14] A. Korbel, W. Bochniak, Stratified plastic flow in metals, Int. J. Mech. Sci. 128–129 (2017) 269–276.
  • [15] A.C. Damsk, G.J. Dienes, Point Defects in Metals, Gordon and Breach Science Publishers, New York, London, 1963.
  • [16] D. Terentyev, L. Malerba, Diffusivity of solute atoms, matrix atoms and interstitial atoms in Fe–Cr alloys: a molecular dynamics study, J. Nucl. Mater. B329–333 (2004) 1161–1165.
  • [17] K. Sato, T. Yoshiie, Q. Xu, One dimensional motion of interstitial clusters in Ni–Au alloy, J. Nucl. Mater. A367–370 (2007) 382–385.
  • [18] W. Bochniak, A. Korbel, P. Ostachowski, S. Ziółkiewicz, J. Borowski, Extrusion of metals and alloys by KOBO method, Metal Form. 24 (2) (2013) 83–97.
  • [19] A. Korbel, W. Bochniak, Refinement and control of the metal structure elements by plastic deformation, Scripta Mater. 51 (8) (2004) 755–759.
  • [20] B.D. Wirth, G.R. Odette, D. Maroudas, G.E. Lucas, Energetics of formation and migration of self-interstitials and self-interstitial clusters in a-iron, J. Nucl. Mater. 244 (3) (1997) 185–194.
  • [21] B.D. Wirth, G.R. Odette, D. Maroudas, G.E. Lucas, Dislocation loop structure, energy and mobility of self-interstitial atom clusters in bcc iron, J. Nucl. Mater. 276 (1–3) (2000) 33–40.
  • [22] T. Diaz de la Rubia, N. Soneda, M.J. Caturla, E.A. Alonso, Defect production and annealing kinetics in elemental metals and semiconductors, J. Nucl. Mater. 251 (1997) 13– 33.
  • [23] Y.N. Osetsky, M. Victoria, A. Serra, S.I. Golubov, V. Priego, Computer simulation of vacancy and interstitial clusters in bcc and fcc metals, J. Nucl. Mater. 251 (1997) 34–48.
  • [24] M. Otsuka, S. Shibasaki, M. Kikuchi, Superplasticity in coarse grained Al–Mg alloys, Mater. Sci. Forum 233–234 (1997) 193– 198.
  • [25] Y. Li, Z. Yao, W. Zhou, C. Qin, H. Guo, X. Liang, Research of superplasticity deformation behavior about coarse-grain Ti– 22Al–25Nb alloy, Adv. Mater. Res. 818 (2013) 9–13.
  • [26] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progr. Mater. Sci. 45 (2) (2000) 103–189.
  • [27] A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, A. Yanagida, Severe plastic deformation (SPD) processes for metals, CIRP Ann. Manuf. Technol. 57 (2) (2008) 716–735.
  • [28] R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y.T. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation, J. Metals 58 (4) (2006) 33–39.
  • [29] Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: a wealth of challenging science, Acta Mater. 61 (3) (2013) 782–817.
  • [30] W. Bochniak, A. Korbel, P. Ostachowski, A. Paliborek, Mechanical properties of aluminum extruded by KOBO method with direct and lateral outflow, Int. J. Mater. Res. 102 (10) (2013) 974–979.
  • [31] A. Korbel, W. Bochniak, P. Ostachowski, M. Łagoda, Conditions for initiating consolidation processes of magnesium alloy chips undergoing low-temperature extrusion by the KOBO method, Rudy Met. Nieżel. Recykl. 60 (12) (2015) 734–740 (in Polish).
  • [32] A. Korbel, W. Bochniak, Lüders deformation and superplastic flow of metals extruded by KOBO method, Philos. Mag. 93 (15) (2013) 1883–1913.
  • [33] A. Korbel, W. Bochniak, P. Ostachowski, A. Paliborek, M. Łagoda, A. Brzostowicz, A new constitutive approach to large plastic deformation, Int. J. Mater. Res. 107 (1) (2016) 44–51.
  • [34] W. Bochniak, P. Ostachowski, S. Jagieła, Plastic forming of AZ91 alloy using the KOBO method, J. Eng. Mater. Technol. 138 (4) (2016), 041002-041002-6.
  • [35] A. Korbel, W. Bochniak, Liquid like behavior of solid metals, Manufact. Lett. 11 (2017) 5–7.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92c07796-7e2e-4862-aa7a-05f38913c2ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.