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This paper is concerned with the problem of reflection and transmission of elastic waves due to an incident
plane qSV-wave at a corrugated interface between two dissimilar monoclinic elastic half-spaces. Due to the
corrugated nature of the interface, there exist regularly and irregularly reflected and transmitted elastic waves.
Using Rayleigh's method of approximation, the reflection and transmission coefficients of regular and irregular
waves are obtained for the first order of approximation. We have found that these coefficients are functions of the
angle of incidence, elastic constants, corrugation and the frequency parameter. These coefficients are obtained for
a special type of interface, z=dcospy. We have computed these coefficients for a particular model and

discussed the effects of corrugation and frequency parameter.
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1. Introduction

Elastic wave propagation is fascinating subject that deals with numerous problems in various fields
such as seismology, geophysics, tele-communication (signal processing), medicine (echography), metallurgy
(non-destructive testing) and earthquake engineering. These waves are useful in detection of notches and
faults in different types of materials such as in railway tracks, buried land-mines, etc. The technique of
seismic wave propagation is a tool for investigating the internal structure of the Earth and also used for
exploration of valuable materials such as minerals, crystals, fluids (oils, water), etc. beneath the earth
surface. When the seismic signal passes through different layers/discontinuities inside the Earth, the
phenomena of reflection and transmission take place. These signals carry lots of information about the Earth
structures see: Chattopadhyay and Choudhury [1], Chattopadhyay et al. [2], Dowaikh and Ogden [3], Sheriff
and Geldart [4], Singh [5], Singh and Khurana [6], Udias [7] and others.

The propagation of elastic waves and their reflection/transmission from discontinuities/ interfaces are a
great concern of many researchers. Chattopadhyay and Saha [8, 9] obtained the reflection and transmission
coefficients of P and qSV-waves at a plane interface between two different monoclinic media. Nayfeh [10]
derived analytical expressions for the reflection and transmission coefficient from the interface of
liquid/anisotropic half-spaces possessing monoclinic symmetry. Singh and Khurana [11] also investigated the
reflection and transmission of P and SV-waves at the interface between two monoclinic elastic half-spaces. But
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there is much experimental evidence that the discontinuities/interfaces between layers are not perfectly plane,
but they are of irregular/corrugated nature. These irregular natures of the interfaces affect the reflection and
transmission of elastic waves. Thus, it is important to take into account the problems related with the effects of
irregular interfaces. It was Rayleigh [12] who first discussed the problems of reflection and transmission
phenomena of light/sound waves from an irregular boundary surface. In his method, the function defining the
corrugated interface in the expressions of boundary conditions is expanded in Fourier series and the unknown
coefficients are determined upto any given order of approximation in terms of small parameter characteristics
of magnitude and slope of corrugated interface. Later, Rayleigh's technique was applied to various other fields
to study the reflection and transmission phenomena of waves at an irregular boundary surface. Several papers
on scattering of elastic waves from boundary surfaces have appeared based on Rayleigh's method and other
techniques, e.g. papers by Abubakar [13], Asano [14], Dunkin and Eringen [15], Gupta [16], Kuo and Nafe
[17], Levy and Deresiewicz [18], Rice [19], Singh and Tomar [20, 21] and Tomar and Kaur [22].

Chattopadhyay et al. [23] investigated the problem of reflection and transmission of plane quasi P-
waves at a corrugated interface between distinct triclinic elastic half-spaces. They obtained the closed form
expressions of reflection and transmission coefficients using Rayleigh's method of approximation. Kaur and
Tomar [24] investigated the problem of reflection and transmission of shear wave incident upon a corrugated
interface between two monoclinic elastic half-spaces with the help of Rayleigh's technique. Kennett [25]
studied the problem of seismic wave scattering by obstacles on interfaces based on an integral equation
formulation using the first-order perturbation theory. Paul and Campillo [26] investigated the effect of small-
scale irregularities of a reflecting boundary on an elastic wave using a discretized form of boundary integral
equations and a plane-wave decomposition of seismic wave fields. The scattering of plane harmonic P, SV
or Rayleigh waves by two dimensions corrugated cavity completely embedded in an isotropic half-space or
full-space was investigated by using a direct boundary integral method [27]. Singh and Singh [28] explained
the problem of the effect of corrugation on an incident qSV-wave in pre-stressed elastic half-spaces with the
help of Rayleigh's method of approximation. They found out the reflection and transmission coefficients of
the regularly and irregularly reflected and transmitted waves. Singh and Tomar [29, 30] investigated the
problem of qP-waves at a corrugated interface between two dissimilar monoclinic elastic half-spaces and
obtained the reflection and transmission coefficients of the irregular waves using Rayleigh's technique.

In this paper, we have investigated the problem of reflection/transmission of qSV/qP-wave from a
corrugated interface for an incident qSV-wave at a corrugated interface between two dissimilar monoclinic
elastic half-spaces. Using Rayleigh's method of approximation, the expressions of the reflection and
transmission coefficients of the irregular waves are obtained for the first order of approximation. These
coefficients are derived and computed numerically for a special type of interface, z=dcos py. We have

found that these coefficients are functions of elastic constants, angle of propagation, frequency and
corrugation parameters.

2. Basic equations

The constitutive relations in a homogeneous anisotropic elastic material of monoclinic type with the
yz-plane as the plane of symmetry are given by [11]

Ty =Cp1€11 +Cp2€o +Cp3€33 +2C 4803, Ty =Cpr€p; +Cox€p +Co3€33 + 204853,
To3 =Cp1q€1) +Coy€sy +C34€33 + 20 €03,  T33 =Cp3€p; +Co3€5 +C33833 + 2034853, (2.1
T = 2(055‘313 *+Cs56€p2 ), T3 = 2(056‘313 +Css€12 ),

where u = (u;,u,,u;) are components of displacement, T;; are stress tensors, ¢; (i,j=1,2,3, ...,6) are elastic

constants and e; is the strain tensor given by
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The equations of motion in such anisotropic materials without body forces are given by

—T=pTsh (1j=123) 2.2)

where p is density of the medium.
Let us consider two dimensional wave propagation in the yz-plane so that

0o 0 0o 0 0o 0
u; =0, —=—=0, —=— and —=—.
Ox; Ox Ox, Oy Ox; Oz

The equations of motion in terms of displacements components may be written as

62 62 82 82 82 82 82
022_u22+c44a_ugz+024a_blgj+c34a_b?+2cz4a_gz+(cz3+024)ay_23=p aiz’ (23)
z Yy z Yoz z t
2 2 2 2 2 2 2
0 0 0 0
024a_u22+034a_u;+c44_u;+033_u;+2034£+(023 +024)_5 2 =p L?’ (2.4)
oy 0z oy 0z 0yoz 0yoz ot

It may be noted that Eqs (2.3) and (2.4) are the equations of motion for the coupled qSV and qP-
waves. The solution of these equations may be taken in the form

{ug,uz}(y2.t) ={A4d,, Ad; }exp {1k (ct — p,y— p3z)}, (2.5)

where c is the phase velocity, & is the wavenumber, p= (0, p,, p;) is the unit propagation vector, d =
(0, d,, d3) is the unit displacement vector.
Using these expressions of #, and u; in Eqs (2.3) and (2.4), we have

(X—pc2 )ar2 +Yd; =0, Yd,+(W—-pc’)d; =0, (2.6)
where

2 2 2 2
X =cypy +cyyps +2¢4p2p3, Y =Coyp3 +C34p5 +(023 +C44)P2P3a

2.7)
W =cyup3 +¢55P3 + 263455
Using Eq.(2.6), we get
2003, = X +WEJ(X - W) +4Y7, 2.8)

where (—ve) sign represents the phase velocity of ¢SV —waves (c,) and (+ve) sign represents that of gP —

waves (c;).
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3. Problem formulation

Consider the Cartesian coordinates with the x and y-axis lying horizontal and the z-axis is vertical
with positive direction pointing downward. Suppose two dissimilar homogeneous monoclinic half-spaces,

M ={(y;z):yeR, ze[(,»)} and M ={(y;z):y€R, ze (-»,()} are separated by z=_ (y), which is a

periodic function of y independent of x whose mean value is zero. We will denote all elastic constants, stress
tensors and displacement components in medium M without prime and those of M' with primes. The
geometry of the problem is shown by Fig.1. The Fourier series expansion of { (y), is given as

C(J/)ZZ(Cnempy +C_ne—mpy)’ (3.1)

n=1

where C, and C_, are the coefficients of series expansion of order n, p is the wavenumber and 1=+v-/.

Introduce constants d ; ¢, ; and s, as

d n_ln
Cor=5 Can == ;S . (n=2.34.....),
so that
&(v)=dcos(py)+ [ c,cos(npy)+s,sin(npy)]. (3.2)
n=2

If the interface is represented by only one cosine term, i.e., {()) =dcos(py) , then the wavelength of
corrugation is 27/ p and d is the amplitude of corrugation.

Fig.1. Geometry of the problem.
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We shall now discuss the reflection and transmission of elastic waves due to the incident plane qSV-
wave at the corrugated interface, z=(y). Suppose a plane qSV-wave propagating in the half-space, M with
an angle 0, and amplitude constant 4, be incident at the corrugated interface. This incident wave gives rise

to regularly and irregularly reflected and transmitted qSV and qP-waves [14].
The full structures of reflected and transmitted waves are given by:
(for the half-space, M)

u, :Aoexp(PO')nLAexp(P)+Bexp(Q)+i{A:f exp(PnJ—“)+Bf exp(Q,f)} , (3.3)
n=1

u; =D, exp(PO')+Dexp(P)+Eexp(Q)+§:{D§ exp(Pni)+Ej exp(Qf )} 3.4
n=1I

where (A,D) are amplitude constants of the regularly reflected qSV-wave at angle 0, (Ani, Dni) are

amplitude constants of the irregularly reflected qSV-waves at angles Bi , (B,E) are amplitude constants of

the regularly reflected qP-wave at angle o, (B,f, E,f) are amplitude constants of the irregularly reflected

. - . | in0, — 0
gP-wave at angles (pi and the expressions of F),, P, Rf, Q, Qf are given by F, = w)(z‘— YSIN By ~ 208 By j ,

Co

ysinO+zcosO | . ysinG;‘rJrzcost ysin@+zcos
P=w|t-———|,P =10 t - , O=w|t—— | and
¢ ) ¢

. + +

Sme, +zcos o,

Qnizl(o[t_y (pl’l (Pl’l}.
¢

These amplitude constants satisfy the following relations [11]

Ay=F,D,, A=FD, B=F,E, A =F'D., B =F.E., (3.5)
where
+ +
F = YO F= YI() F.= YZO + Yln + _ Y2n
0~=" 7 P -7 5 > 10— > n ) + 2 In = +
pcy — Xy pcy —Xpo pc; — Xy pc; — X, pc; — X5,

29002 =Xy +W, _\/(XO_WO)Z +4Yo2, chg = X9+ Wi _\/(XIO —W10)2 +4Y]20 )

ZPCJZ =X, +Wy "‘\/(Xzo —W20)2 +4Yzzo .

(for the half-space, M")

u2 =Gexp(R)+ H exp(S) + Z:{G;£ exp(R;f) + H:f exp(S:jr )} , (3.6)
n=I
u3 =lexp(R)+Jexp(P+ Z:{I;‘r exp(R,f ) + J,f exp(S,:‘r )} , 3.7

n=1
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where (G, I) are amplitude constants of the regularly transmitted qSV-wave at angle o, (G:,‘r i ,f ) are

amplitude constants of the irregularly transmitted qSV-waves at angles ocf, (H, J) are amplitude constants of

the regularly transmitted qP-wave at angle f3, (H ,:‘r, J :f) are amplitude constants of the irregularly transmitted

n

qP-waves at angles B and the expressions of R, R,f, S, S,f are given by R = tm[t —MJ ,

G

sinos —zcosou sinf} —zcosf3 sinp — zcosp*
R, =10 -2 2 LLS=w t—y—, and S; =1® ¢ — 250 , .
c, o &

These amplitude constants also satisfy the following relations

G=Fyl, H=F,J, G,=F.I, H,=FLJ,, (3.8)
where
Y Yy - Y, + Y
F20:,,2—’ Fs = ; ,24 » = 2 . L’ F;, = 2 = o
pc; — X3 pe —Xy pc; —X3, pe; — X,

12 2
2p'c, :X30+W30‘\/(X30_W30)2+4Y320, 2p'¢ :X40+W40+\/(X40_W40)2+4)220 :

The expressions of X, ¥ and W with corresponding suffixes are obtained from Eq.(2.7) by inserting
(py, p3); for the incident qSV-wave: (sin 0,,—cos 90) , for the regularly reflected qSV -wave:

(sin 0, cos 9), for the irregularly reflected qSV-wave: (sinefl, cos G,i,), for the regularly reflected qP-wave:
(sin ¢, cos (p), for the irregularly reflected qP-wave: (sin @, cosQ; ) , for the regular transmitted qSV-wave:
(sina,—cosa); for the irregularly transmitted qSV -wave: (sin o ,—cos ai) , for the regularly transmitted
gqP-wave: (sin,—cosp), for irregularly transmitted qP-wave: (sin Bﬁ,—cos Bﬁ )

The Snell law of this problem is given by [14]

sin@, _ sin® _ sin @ _ sino _ sin3 :i (3.9)
c®) (0 Ci(@) Cya) C/B) < '

where c, is apparent velocity.

‘Moreover, spectrum theorem gives the relations between the angle of the regular wave and those
of irregular waves [13]

ei 0 C)
0 ¢ np | €1
sin Z —sin =+ b n=0,12, (3.10)
a; (04 (] CZ
B P €

where (+ve) signs of the right hand side correspond to (+ve) signs of the left hand side, while (—ve) signs
of the right hand side correspond to (—ve) signs of the left hand side of the equation.
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4. Boundary condition

The component of displacements and tractions (normal and shear) are continuous at the corrugated
interface. Mathematically, these conditions at z={(y) may be written as

' 2 ' C\, 2
T3t (T33 —Txn )C -0 =15+ (T33 —Txn )C -130°, 4.2)
T33 _2T23C' + Tzzcvz = T'33 - 2T'23C' + Tvzzgvz ) 4.3)

where C' is the derivative of { with respect to y.
Inserting Eq.(2.1) into Egs (4.2) and (4.3), we get

{(es = c20) € + 2 (1—@'2)}%+ {(ess—c2s)C + 34 (1—@'2)}%

H(es —c24)(;'+c44(1—{;'2)}(%+%]={(c'23 —c;2)§'+c'24(1—§'2)}%+ (44)
=) w7 e 167 2202,

ez +ent? —2c24g'}%+ fess +ext? —2c34g'}%+

sy +ent” —2c44g'}[%+%J ={chs +ent” —2c'24g'}%+ 4.5)

' " - ' Co v,@u' ou.

Using Eqgs (3.3), (3.4), (3.6), (3.7), (3.9) and (3.10) in Egs (4.1), (4.4) and (4.5), we get

Doengo +De K 4 pemtok +Z {Dni ety UKy + EetP Ly } =
n=l (4.6)

> _ + _ +
=[€1CM +J61CN +Z{I;e+mpy+1QMn +J’-1te+mpy+1§Nn },

n=1

4)e' K0 4 g™ K 4 goiEh +z{ AEFIIEKS | gt gEp—iCLy } _
n=1 (4.7)

= _ + _ +
_ GelCM +HelC_,N + Z{G:€+mpy+ch” +H’-;i-e+mpy+1CNn }’

n=I



734 S.8.Singh and J.Lalvohbika

|:(C23 _CZZ)C' +Cyy (]—C'2 ):“:POAOelCK() +P0Ae—LCK +POB€_1CL +
+Z{ AT TPy WKE +(P() P)Bi Fupy—1CLy, }}+[(c33 _CZS)C'+034 (]_C'Z)J+

d _ + _ +
X {—K()Doe@(o + KDe 'K + LEe " + z {K EpEetnrTChe | [ pEeFpy il }] +
n=1

+|:(C34 - 024 )C_)‘ + C44 (1 - C‘z ):||:_K0A061CK0 + KAe_lC"K + LBe_lCL + ])ODoelc"KO + IDODe_]'CK

© B N ~ .
+P0Ee—l,CL + Z{K};_FAnie+U’le_lCKn +LJ;B5€+MP/V—LCJL,, + (P + np)D+ Fupy— "CKn "

n=1

— + ' ' ' ' '
+(By £ np)Eyet )= [(C 237C22 )C +C oy (1 -¢? )}[PoGech + pyHe' ™ +
— + ' ' ' ' '
+Z{ p)G, e Ty (R + nP)HnieerPyﬂgN” y1- [(C 33 =C 23 )C +C3y (1 -g? )J X
e _ + = + \ . C \
x| MIe™M + NJe'™N + Z{Mj]je“"l’y*‘wn + NEJE PPy HENy }} —[(c 30=€00 )G+ (167 )]
n=1I

> _ +
[MGeLCM + NHe'™Y — By Ie'™M — B Je ™ + 3 (MGt M 4
n=1

+N$H:l_re¢1npy+1CN;f _ (P() + np)l:l_remnpyHCM,f _ (P() + np)JiemnpyﬂQNf }]’

(4.8)

[023 + 05002 —2c24g'][Pvoe‘€K0 +PyAe” K + B Be S + Z{ p) AT K 4

— + ' '
+(B) £np) Bret P4 [033 +¢y307 = 2¢5,C ] [-K,Dye'**0 + KDe K + LEe™%

s - + - + . .

Z{KfDnieMPy_LCK" + LiEnieerpy_lCL” H+[ezq +c24C = 2¢c4yC 1 —Kvoengo +Kde" K

n=1
2 - + < +

+LBe"% + PyDye' 0 + D™ 1 Py Ee™ + 3 Ky AyeT Ry [ Bt o
n=1

— + — + ' ' ' ' '
+(By £np) D™ Ki 4 (B £np) Eyet 5] = [c 23 +€ 287 =2¢ 5L ] X[ P,Ge'M + PHe'" +

o0

D (B £np)G,e Ry My +(By £np)H,e" """ N 11— [0'33+C'23§'2 —20'345]
n=1

> . + - + \ .
[ MIe'M + NJe'SN + 3 (M [y e™ P M 4 NE e PN ety 4 e, 67 = 2¢,446 ]
n=I

i _ +
[ MGe™™ + NHe'™" - Pyle'™M — BJe'™ + 3 4My Gy e™ M+
n=1

— + — + — +
+NEHEF PNy —(By £ np) I ™" M (P s pp)Jie™ PN 4.9)
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where
: +
®sin0, ®cos 0, wcoso +  cos0, ®CosSP
0 = s 0 = s K = s Kn = s L = s
€ € ¢ ¢ ¢
oocoscpi ®cosa, ®cosa’ wcosP wcosP;,
+ + +
L=——+, M=——, M,=—7++%, N=——, N, =——"
¢ ) ) Cy Cy

3. Solution of first order approximation

We assume that the amplitude of the corrugated interface is very small so that higher powers of {

are neglected like
K~ 1K, -0(C7), K =1k -0(C). (5-1)

Using Egs (3.5), (3.8) and (5.1) in Egs (4.6)-(4.9) and collecting terms independent of { and y, we
obtain a set of equations

RS=T (5.2)
where
b
Dy
1 1 -1 -1 D -1
F F;,,-F. -F D, —F,
_ 10t ~Fo| o | Po| | 7o |
L5 -l -, D wi
myp my;—m;  —my D, —my
D
L Do |
lo=(Fycay +cqg) By = (Fyeug+esq) Ky, li=(Feay+cgy) By + (Feytes) K,
L=(Frpcog teg) B+ (Fregytes) L, Ii=(Fop'cyy+c'yy) By = (Foc'yy+c's)) M,

Li=(F30¢' 50+ ¢ ) By — (F3pc' gyt '3 )N, my=(Fycys +c34) By — (Fyezatesz) Ky,
my=(Fyeps +es30) By + (Fyesytes3) K, my=(Fpgco3 +c34) By + (Fyezytess) L,
my=(Fyc'y3+¢'sy) By — (Fyc'sytc's3) M, my=(Fypc'y3+¢'3, ) By — (F3pc'sy+¢'53) N

On solving Eq.(5.2), we get

A

A A
A b

A A
A’ D,

i :_E’ i = = (5.3)
D, A D,
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where
1 1 -1 -1
A= F F}O _F20 _F30

b

and the values of A, Ay, A; and A are obtained by replacing first, second, third and fourth column of A

with column matrix, 7 respectively. This equation gives the ratios of the amplitude constants corresponding
to the vertical components of displacement.

The ratios of the amplitude constants corresponding to horizontal components of displacement is
obtained with the help of Egs (3.5), (3.8) and (5.3) as

FAp B _ Fy A G_Fyh H_ FyA,

(5.4)

b

A
4, F, AT 4 Ry AT 4 F A 4 R A

Now, the amplitude of the incident qSV-wave is given by \/A(f +D§ =\/I +F02 D, . Similarly, we

find the amplitudes of reflected and transmitted qSV and qP-waves. Thus, the reflection and transmission
coefficients of reflected and transmitted qSV and qP-waves for the incident qSV-wave are given by

2 2

A 1+ F/, A

rSV: ]+F2_D7 rp: Ig_Ea (55)
I+F; A I+F; A

. 1+F5 A, . 1+F320A_J'

We come to know that these coefficients depend on elastic constants and the angle of incidence.

(5.6)

Next, comparing coefficients of e*"””" on both sides of those equations, we get

R¥SF =77 (5.7)
where
Df |
DO _ _
I £ fF
R¢= F'ni Flir—l _F21;1 _F;I—‘l S;: D() T¢: 2¢
g 8 -8 & I 15
hi  h§ —hi  —h§ Dy ST
L Dy |

=1, K, k2 E NS ,
Dy Dy Dy Dy



Response of corrugated interface on incident QSV-wave ... 737

- D E I J
f=u_ |-F)K,+ FK—+F,)L—+ F,yM —+ F;,)N— |,
J2 =1, | K, D, 10 D, 20 D, 30 DJ

_— D E I J
ff=\gi+gf —+g—-gf—-g;—
D, D, D, Do

Dl) Dl) DO DO

_— .D . E I - J }
g :[{1(023 —Cop)npFy + 2y PKy (¢34 — ¢34 ) npK, _044K(§}F0 +(c33 —cp3)npKy +

2
—c3,K) F (034 —Cxq )nPPo + C44P0K0] Tns

g7 Z[{#Cﬁ — oy )npFy — 2, FK F (c34 — 24 )npK _044K2}F$(C33 —C23)npK +

~c3,K7 F (35— 24 )npFy - 044P0K] s

N+

& = [{1(023 —Cx )"PH) —cBLF (034 —Cyy )"PL - 044L2} FipF (C33 —Cy3 )”PL +

2
—Cc34L° F (034 —024)”PP0 _044P()L:| Fn>

g} Z[{i(clﬁ _Cvzz)nppo +¢ P M i(c'34 _5'24)’7PM —Cy44M2}F20 i(Cv33 _0'23)an *

1 2_ 1 Al ]
—c 3 M +(C34 —024)”171)0 +C44P()MJC¢n,

g5 :[{;(0'23 _Cvzz)ino +C‘24P0Ni(0'34 _0'24)”PN_C'44N2}F30 1L(0'33 _0'23)”PN+

'3 N? 7 (3 =y )Py +c'44P,,N}Q¢n,

g5 = [{0441( +eo (Bt P)}F + 54Ky + ¢4y (By J—rnp)}
g = —[{044@ +eyy (B £ ”P)} Fip+csly +cy (B £ ”P)} ’
g = {0'44M N E P)}an +C3My ¢ 4y (B £1p),

gi ={C'44N —co(Bytn )}an +C3uNy = cyy (B £ ).
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hy = BCzsPoKo + 2¢,,npFy — c3,K; _2044”pK0}F0 *

T

2
—c33Ky F 2¢3mpKy — 5, (K * 2044”1?1)0]
hi = [{—cBPOK + 2¢c, npF) — c34K2 * 2044npK} F- c33K2 * 2¢3npK —c3, K + 2044inOJ§¢n ,
h3 = [{—023L + 2¢,,npP) — 3,1 £ 2044”PL} Fyg —c53I7 £ 2c5,npL = c3,Fy L+ 2¢,ynpF } Csns

h; z[{C'B ByM £2¢',npPy —c's, M? F2¢'y an}F20 *

Fno

—c's3 M? F 2¢'3 npM + '3y F,M £ 2¢' nPPo]C

iy = [{c'ﬁ ByN % 2¢" 3, npBy = '3y N’ F2¢' 4 npN | Fi +

Fno

—¢'ys N2 F2¢',,npN +¢'5, BN £ 2¢',, inO]

hi = _[{023 (B J—rnp)+c34K;f}Fni +c53Ky +c54(By J—F"P)}

hg = _[{023 (B * ”P)+C34LJZF}FJJ7F1 +c33L, +c34(B) J—F”P)J ,

h ={—C'23(P0 inp)+c'34Mf}an +c's3 My =5y (By 2 mp),

B ={=c's3 (B )+ 'sy Ny | Fi '35 Ny =5, (By £ mp).
Solving Eq.(5.7), we get

pf Ppr EF Ao Ap g Ap

n n JI;
, , 2 s _— 5.8
DO A t DO A t DO A t DO A + ( )

where

1 1 -1 -1

A
g 8 -8 -8
W b —hf kg

and the values of A ,,A

D + ’AF and AJi are obtained by replacing first, second, third and fourth column of

Eﬂ
A* with column matrix, T respectively. This equation gives the ratios of the amplitude constants of
irregular waves corresponding to the vertical components of the displacement.

The ratios of the amplitude constants of irregular waves corresponding to horizontal components of
displacement are obtained with the help of Egs (3.5), (3.8) and (5.8) as
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A _Fy o B _Fpfe G P tn o M FL O

n n n n n

4 7()Ai’ 4 Fy At 4 Fy AT 4 Fy AT

(5.9)

The reflection and transmission coefficients of the first order of approximation for irregularly
reflected and transmitted qSV and qP-waves are

2 A
s o [+ F, CE
sV Pt 1+F02 AT ’
(5.10)
2 2
v |1F S o _ |1 E B
[ = > T Iy = 2+
v I+ F; A p I+ F; A~

We come to know from Eqs (5.10) that the coefficients corresponding to the irregularly reflected and
transmitted qSV and qP-waves are functions of the elastic constants, angle of incidence, corrugation and
frequency parameters.

6. Special case: An interface of z=dcos py

When the interface is represented by only one cosine term, z =d cos py, with d as the amplitude of
corrugation. In this case

0 if nzl
n=C,= 6.1
¢ ¢ % if n=1. ©.1)

Thus, using these values, the reflection and transmission coefficients for the first order
approximation of the corrugation are given by

(6.2)

where values of Ei,ﬂi},ng],F;’},Ai,AD]i ’AE}' ,A[]i and AJIi are obtained from Eq.(5.10) by using Eq.(6.1).

We will compute these coefficients for a particular model.

7. Particular case

(a) When the two monoclinic half-spaces, M and M' reduce to transversely isotropic half-spaces with the axis
of symmetry coinciding with the x-axis, we have
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Clp=Cr3, Cpp=C33, Cs55=Cs5, Cp3=Cpy—2C4y, C1y=Cyy=C33=Cs5=0,

|l — 1 1 — 1 ] — 1 1 — 1 1 1 — 1 — A\l —_ A\l —
c'p=c'3, c'yp=c'yy, Clss=Cl, iy =cyp—20y, cy=chy=c'yy=c'ss=0.

Using these values in Eqgs (5.5), (5.6) and (5.10), we may obtain the reflection and transmission
coefficients corresponding to the regular and irregular waves.
(b) If the corrugation of the interface is neglected, i.e., d=0, the problem reduces to the reflection and
transmission of elastic waves at a plane interface between two monoclinic elastic half-spaces. The reflection
and transmission coefficients of the reflected and transmitted qSV and qP-waves are given by Eqs (5.5) and
(5.6). These results exactly match those of Singh and Khurana [11].
(c) If the half-space, M' is absent, then the problem reduces to the reflection of qSV and qP-waves for the
incident gSV-wave. The reflection coefficients are given by Eq.(5.5) with the following modified values

A=llm2—12m1, ADZZZmO_Z()mz, AE=lom1—11m0.
These results exactly match those of Singh and Khurana [6].
8. Numerical results and discussion

We will compute the angles of reflected and transmitted waves through Snell's law given by Eq.(3.9)
in which the apparent velocity c, is related with the dimensionless velocity by ¢ = %“ Let us find out the

angles of reflected qSV and qP-waves in the half-space, M. Equation (2.8) may be written as

&l —(W+X)e +(WX -¥7) =0 8.1)
where
= X — Y — c
X=—0— V=—7—, W= 4 7 g =L
PrCyy PrCyy PrCyy Y Cyq

There are two roots of ¢~ corresponding to qSV and qP-waves for a given p =25 and for a given
P
value of ¢”, there are two roots of p corresponding to the angles of reflected qSV and gP-waves [29].
Substituting the values of X, Y, and W into Eq.(8.1), we get

dyp* +d,p’ +d,p’ +d;p+d, =0, (8.2)
where

—_ _2 — — R — — — — — \2 — \=2
dy =C33 —Ciy, d1=2(cz4c33_023c34)9 d2=1+022033+2cz4c34_(1"‘023) _(1"‘033)0 .

o= = = = (= = \=2 _—4 — \=2 = =2
d3—2{022034—023024—(024+C34)C }a dy =t =(1+2y)c” +Cy —Cyy.

_P2 so that

. . . 1
We transform this equation with ¢ =—
p D3
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d,q* +dyq’ +d,q° +d,g+d,=0. (8.3)

This equation has two positive roots, i.e., a smaller positive root (g;) and a larger positive root (g,)
which represent the directions of reflected qSV and gP-waves respectively. Thus, 0 =tan~’ (¢;) and

o=tan"'(g,).
Similarly, in the half-space M', the angles of transmitted qSV and qP-waves are obtained as

aztan_l(q'j) and than_l(q'z).

For the numerical computation, the following relevant values of elastic constants are taken [30]:
(for half-space, M-Lithium tantalate)

Cy=0.11x10" N /m?, ¢,;=081x10"N/m?, ¢;,=0, ¢, =094x10"N/m?,

¢33 =2.75x10""NIm?, ¢,,=2.33x10""N/m?, p=7400Kg/m".

(for half-space, M'-Lithium neobate)
¢y ==0.09x10""N/m?, ¢ =075x10"N/m?, ¢'5,=0, ¢, =1.06x10"N/m?,

¢'y3=245x10"N/m?, ¢y, =2.03x10"N/m?,  p'=4700Kg/m’

. ®
the corrugation parameter, (cor = pd)=0.0001 and the frequency parameter, fr =——=100 are taken
by
unless otherwise mentioned. Figure 2 represents the variation of angles of reflected and transmitted qSV and
gP-waves with angle of incidence. We have seen here that the angle of incidence is not equal to the angle of
reflection. Figures 3-11 represent the variation of reflection and transmission coefficients with the angle of
incidence for different values of corrugation and frequency parameters, Figs 12-14 represent the variation of
reflection and transmission coefficients with the corrugation parameter and Figs 15-17 represent the variation
of reflection and transmission coefficients with the frequency parameter at 0 = 20°.
In Fig.2, all angles, (0, ¢, o, B), of the regularly reflected and transmitted waves increase with the

increase of the angle of incidence (0,). It is observed that the angles of reflection and transmission for qSV-

waves are less than that of the qP-waves. Curve I in Fig.3 shows that 7;, starts from a certain value which

v
decreases to zero at 0, =15" and then increases up to 0, =51" with the increase of 0. Thereafter, it

decreases, touching zero value at 6, = 87" . In the same figure, Curve II shows that r, is parabolic in the
region 0<0, < 35% and then it increases with the increase of 0, . Curve III shows the decreasing nature of

t, up to 0, = 81" and then it increases with the increase of 8, , while Curve IV shows that 7, increases

with the increase of 6, .
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Fig.2. Variation of the angle of reflection and transmission with the angle of incidence.
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8.1. Effect of corrugation and frequency parameters
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Fig.3. Variation of reflection and transmission coefficients with angle of incidence (6,).

We are interested to see the effect of corrugation and frequency parameters on the reflection and

transmission coefficients. In Fig.4, the reflection coefficient, r! . corresponding to the irregularly reflected
SV

qSV-wave starts from a certain value and decreases to zero at 9, =14’ creating a parabolic region in 1

4" <0, <81, which then increases with the increase of 0,. It is observed that r:v . increases with the

increase of corrugation (cor) and frequency (fr) parameters. In Fig.5, r; , creates two parabolic regions in $0

<0,<34" and 34° <0, < 90" with the increase of 0. The values of this coefficient also increase with the
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increase of cor and fr. We have observed a similar nature of ' and »/_ with /. and r/, respectively in
sV )4 sV )4

Figs 6 and 7. The coefficient, t:v+ in Fig.8 decreases initially creating a parabolic region in 3 70 < 0,<6 70

and then increases with the increase of 0, . It is observed that the values of ¢’ , increase with the increase of
SV

cor and fr. We come to know that t; . in Fig.9 creates a parabolic region in 27 < 6, < 64° and then increases

with the increase of 6,. The value of this coefficient increases with the increase of cor and fr. Similar

natures of ' _ and t;_ with #/ , and ¢/, respectively are observed in Figs 10 and 11.
sV sV )4

x 10°

l:cor=10"4, =100
I:cor=2x10"%, =110
Ill:cor=3x10"%, =120

sv

Reflection coefficient (rj +)

0 10 20 30 40 50 60 70 80 90
Angle of incidence

Fig.4. Variation of rslv . with 0, for different values of cor and fr.
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l:cor=3x10"4,fr=120

N

N w
T T
| |

-
T
I

Reflection coefficient (f)+)

0 10 20 30 40 50 60 70 80 90
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Fig.5. Variation of rlj . with 0, for different values of cor and fi.
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Fig.6 Variation of rslv, with 0, for different values of cor and fi.
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Fig.8. Variation of tfv+ with 6, for different values of cor and fr.
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Fig.9. Variation of t; . with 6, for different values of cor and fi.
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We have seen from Figs 12 and 15 that the coefficients corresponding to the regularly reflected and
transmitted waves are independent of corrugation and frequency parameters. In Figs 13, 14, 16 and 17, the
coefficients corresponding to the irregularly reflected and transmitted waves are linearly proportional to
corrugation and frequency parameters, but at different rates.

0.18
0.16
—— Y
0.14+ sV
@ II.rp
_5 0.12+ E
Q 1
"g 0.1+ ' g
8 III.0.1><tSV
0.08 —_— Vit R
p
0.06 + B
0.04 ! ! ! !
0 0.2 0.4 0.6 0.8 1
Corrugation parameter N 10—3

Fig.12. Variation of reflection and transmission coefficients of the regular qSV & qP-waves with cor.

(o2}

N

Reflection coefficients
S

0 0.2 0.4 0.6 0.8 1
Corrugation parameter x 10°

Fig.13. Variation of reflection coefficients of the irregularly reflected qSV & qP-waves with cor.
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41
£ 001 — kg 1l ]
Q ]
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s 0.006 ¢ sv 8
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2 0.004¢ P A=
2 \Y
© 0.002+- |
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0 " . . | . . . . | . . . . | . . . . | . . . .
0 0.2 0.4 0.6 0.8 1
Corrugation parameter X 10—3

Fig.14. Variation of transmission coefficients of the irregularly transmitted SV & qP-waves with cor.
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Fig.16. Variation of reflection coefficients of the irregularly reflected qSV & qP-waves with fr.
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Fig.17. Variation of transmission coefficients of the irregularly transmitted qSV & qP-waves with fr.
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9. Conclusion

The problem of the incident gSV-wave at a corrugated interface between two dissimilar monoclinic
elastic half-spaces has been investigated. We have obtained the reflection and transmission coefficients for
the first order of approximation corresponding to regularly and irregularly reflected and transmitted qSV and
qP-waves with the help of Rayleigh's method of approximation. These coefficients are computed numerically
for a specific model and the effect of corrugation and frequency parameters on these coefficients is
discussed. We may conclude with the following remarks:

(1) All coefficients corresponding to regular waves are functions of the angle of incidence and elastic
constants, while those of irregular waves are found to be functions of the angle of incidence, elastic
constants, corrugation and frequency parameters.

(i1)) Theoretically and numerically, the reflection and transmission coefficients of the regular waves are
independent of corrugation and frequency parameters.

(iii) The coefficients corresponding to irregular waves are found to be linearly proportional to corrugation
and frequency parameters.

(iv) It is found that the values of coefficients corresponding to irregular waves increase with an increase of
cor and fr.

(v) The values of coefficients corresponding to irregular waves are found to be small.

Nomenclature

A4,D,4,, Dy, B, ,E, .G,
1,GE 15 H, J,H:, J*

ns’>Tn> no n

¢ —phase velocity

— amplitude constants

¢; — elastic constant

d —unit displacement vector
e; — strain tensor
+ +
Fo FsFps By s Frys

L — coupling constants
£205F305 8505 F3p

k —wave number
P —unit propagation vector

pd  — corrugation parameter
r.r.r e, —reflection coefficients
VP sy p
to.t,,t" +,t"s —transmission coefficients

u —displacement

¢y, — coefficients of Fourier series
T; — stress tensor
(O]

— — frequency parameter
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