PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification of technical condition of the overhead power line supporting structure

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Identyfikacja stanu technicznego konstrukcji wsporczej napowietrznej linii elektroenergetycznej
Języki publikacji
EN
Abstrakty
EN
Technical diagnostics of the overhead power line supporting structures is very important from the point of view of reliability and the national energy security. The paper presents a method of identification of technical condition of power line supporting structures. The technique is based on testing the correlation between the change of stress in the system and the change of modal parameters caused by damage. Presented approach is comprehensive and accounts for a number of problems related to the diagnostics of large-size objects of complex geometry. The basic advantage of the developed identification algorithm of the overhead power line supporting structures technical condition is low sensitivity to measurement errors, which is very important in the context of exploitational diagnostics.
PL
Diagnostyka techniczna konstrukcji wsporczych napowietrznych linii elektroenergetycznych jest zagadnieniem niezwykle istotnym z punktu widzenia niezawodności i bezpieczeństwa energetycznego kraju. W artykule przedstawiono metodę identyfikacji stanu technicznego kratownicowych konstrukcji wsporczych. Technika jest oparta na badaniu korelacji pomiędzy zmianą stanu naprężenia w układzie, a zmianą parametrów modalnych, spowodowanych uszkodzeniem. Zaprezentowane podejście jest kompleksowe i uwzględnia szereg problemów związanych z diagnostyką obiektów wielkogabarytowych o złożonej geometrii. Podstawową zaletą opracowanego algorytmu identyfikacji stanu technicznego konstrukcji wsporczych jest niska wrażliwość na błędy pomiarowe, co jest niezwykle istotne w kontekście diagnostyki eksploatacyjnej.
Rocznik
Strony
115--124
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • AGH University of Science and Technology Faculty of Mechanical Engineering and Robotics Department of Power Systems and Environmental Protection Facilities al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology Faculty of Mechanical Engineering and Robotics Department of Process Control al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology Faculty of Mechanical Engineering and Robotics Department of Robotics and Mechatronics al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • 1. Allemang R J. The Modal Assurance Criterion – Twenty Years of Use and Abuse. Sound and Vibration, 2003; August: 14–21.
  • 2. Bartodziej G, Tomaszewski M. Blackout w rejonie Szczecina. Uwagi i wnioski. Energetyka 2008; nr 10.
  • 3. Chen H P. Application of regularization methods to damage detection in large scale plane frame structures using incomplete noisy modal data. Engineering Structures, 2008; 20(11): 3219–3227, https://doi.org/10.1016/j.engstruct.2008.04.038.
  • 4. Ciesielka W, Szopa K, Gołaś A. The analysis of load of overhead power line due to weather condition and design of smart system of its recognition. Polish Journal of Environmental Studies 2016; 25(5A): 27–36.
  • 5. Dawson B. Vibration condition monitoring techniques for rotating machinery. The Shock and Vibration Digest, 1976; 8: 3, https://doi. org/10.1177/058310247600801203.
  • 6. Dymek D, Jastrzębska E, Kurbiel W. Awarie linii elektroenergetycznych wywołane oblodzeniem. XXVI Konferencja Naukowo Techniczna Awarie Budowlane, Szczecin-Międzyzdroje, 2013; 477–484.
  • 7. Escobar J A, Sosa J J, Gomez R. Structural damage detection using transformation matrix. Computer and Structures 2005; 83: 357–368, https://doi.org/10.1016/j.compstruc.2004.08.013.
  • 8. Esfandiari A, Bakhtiari-Nejad F, Rahai A. Theoretical and experimental structural damage diagnosis method using natural frequencies through an improved sensitivity equation. International Journal of Mechanical Sciences 2013; 70: 79–89, https://doi.org/10.1016/j. ijmecsci.2013.02.006.
  • 9. Ewins D J. Modal testing: Theory and practice. Letchworth, Research Studies Press, 1984.
  • 10. Farrar C R, Doebling S W. An Overview of modal-based damage identification methods. Proceedeings of DAMAS Conference, Sheffield, UK, June, 1997.
  • 11. Gołaś A, Iwaniec M, Szopa K. Hashed data transfer in SHM distributed systems with the use of Power Line Communication technology. Key Engineering Materials 2012; 518: 154–159, https://doi.org/10.4028/www.scientific.net/KEM.518.154.
  • 12. Instytut Meteorologii i gospodarki wodnej. Biuletyn monitoringu klimatu Polski. Warszawa Styczeń 2010.
  • 13. Iwaniec J, Kurowski P. Experimental verification of selected methods sensitivity to damage size and location. Journal of Vibration and Control 2017; 23(7): 1133–1151, https://doi.org/10.1177/1077546315589677.
  • 14. Iwaniec J. Sensitivity analysis of an identification method dedicated to nonlinear systems working under operational loads. Journal of Theoretical and Applied Mechanic, 2011; 49(2): 419–438.
  • 15. Jassim Z, Ali N, Mustapha F, Abdul Jalil N. A review on the vibration analysis for a damage occurrence of a cantilever beam. Engineering Failure Analysis 2013; 31 442–461, https://doi.org/10.1016/j.engfailanal.2013.02.016.
  • 16. Kammer D C. Sensor placement for on-orbit modal identification and correlation of large space structures. Journal of Guidance, Control, and Dynamics 1991; 14(2): 251–259, https://doi.org/10.2514/3.20635.
  • 17. Lam H F, Yin T. Dynamic reduction-based structural damage detection of transmission towers: Practical issues and experimental verification. Engineering Structures 2011. 33: 1459–1478, https://doi.org/10.1016/j.engstruct.2011.01.009.
  • 18. Li D S, Li H N, Fritzen C P. A note on fast computation of effective independence through QR downdating for sensor placement. Mechanical Systems and Signal Processing 2009; 23(4): 1160–1168, https://doi.org/10.1016/j.ymssp.2008.09.007.
  • 19. Maia N M M, Almeida R A B, Urgueira A P V, Sampaio R P C. Damage detection and quantification using transmissibility. Mechanical Systems and Signal Processing 2011; 25: 2475–2483, https://doi.org/10.1016/j.ymssp.2011.04.002.
  • 20. Nobahari M, Seyedpoor M. Structural damage detection using an efficient correlation-based index and a modified genetic algorithm. Mathematical and Computer Modelling 2011; 53 1798–1809, https://doi.org/10.1016/j.mcm.2010.12.058.
  • 21. Paczkowska T, Paczkowski W.: Aspekty budowlane katastrofy energetycznej w rejonie szczecińskim. XXIV Konferencja Naukowo Techniczna Awarie Budowlane, Szczecin-Międzyzdroje 2009; 151–176.
  • 22. Richardson M H, Formenti D L. Parameter estimation from frequency response measurements using rational fraction polynomials, Proceedings, 1st IMAC 1982, Orlando, Fl.
  • 23. Szopa K. Identyfikacja uszkodzeń wielokrotnych konstrukcji mechanicznych z wykorzystaniem modeli zredukowanych. 57. Sympozjon Modelowanie w mechanice, 2018.
  • 24. Szopa K, Iwaniec M, Gołaś A. Low frequency identification of critical states of transmission tower structures. Mechanics and Control 2013; 32(3): 102–109, https://doi.org/10.7494/mech.2013.32.3.102.
  • 25. Urząd Regulacji Energetyki. Podsumowanie dotyczące awarii sieci w grudniu 2009 r. i styczniu 2010 r. na obszarach objętych właściwością poszczególnych operatorów systemów dystrybucyjnych. www.ure.gov.pl, 2010.
  • 26. Worden K, Burrows A P. Optimal sensor placement for fault detection. Engineering Structures 2001; 23(8): 885–901, https://doi.org/10.1016/ S0141-0296(00)00118-8.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92bdb83c-ea29-46a7-bf2c-860c018f2a8f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.