PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Integrating disturbance handling into control strategies for swing-up and stabilization of rotary inverted pendulum

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The rotary inverted pendulum (RIP) is an underactuated mechanical system with fewer input controls than output controls. The application of the RIP model is to investigate the control of nonlinear systems, but is useful in other fields as well, as it is simple to analyze the dynamics and test despite its high nonlinearity. The two fundamental control issues in the RIP are achieving the desired balance position of the pendulum, and maintaining stability. The Energy-based swing-up-controller is used for the model to bring the pendulum to an upright position. Regarding the issue of stability control, the Linear Quadratic Regulator (LQR) linear controller is well-known for its effectiveness and stability, but it loses stability in the presence of disturbance. The sliding mode controller (SMC) is able to resist the impact of disturbances affecting the model. Therefore, this paper combines both controllers to address the balancing stability problem of the RIP system. The LQR-based SMC controller uses the LQR controller as the basic controller to stabilize the pendulum, and employs the SMC controller to resist the impact of disturbance. In addition, it is necessary to accurately estimate the velocity of the pendulum, and arm in order to apply them to the real model. This paper designs an observer to solve this problem. The simulation results show that the proposed controller performs well in the presence of input disturbance.
Twórcy
  • Hanoi University of Science and Technology, 11615 Hanoi, Vietnam
autor
  • Hanoi University of Science and Technology, 11615 Hanoi, Vietnam
  • Hanoi University of Science and Technology, 11615 Hanoi, Vietnam
Bibliografia
  • [1] K.-Y. Chou and Y.-P. Chen, “Energy based swing-up controller design using phase plane method for rotary inverted pendulum”. In: 2014 13th International Conference on Control Automation Robotics and Vision (ICARCV), vol. 1, no. 1, 2014, 975–979, 10.1109/ICARCV.2014.7064438.
  • [2] B. A. Elsayed, M. A. Hassan, and S. Mekhilef, “Fuzzy swinging-up with sliding mode control for third order cart-inverted pendulum system”, International Journal of Control, Automation and Systems, vol. 13, 2015, 238–248, 10.1007/s12555-014-0033-4.
  • [3] M. F. Hamza, H. J. Yap, I. A. Choudhury, A. I. Isa, A. Y. Zimit, and T. Kumbasar, “Current development on using rotary inverted pendulum as a benchmark for testing linear and nonlinear conrol algorithms”, Mechanical Systems and Signal Processing, vol. 116, 2019, 347–369, 10.1016/j.ymssp.2018.06.054.
  • [4] J. Huang, T. Zhang, Y. Fan, and J.-Q. Sun, “Control of rotary inverted pendulum using model-free backstepping technique”, IEEE Access, vol. 7, 2019, 96965–96973, 10.1109/ACCESS.2019.2930220.
  • [5] S. Irfan, A. Mehmood, M. T. Razzaq, and J. Iqbal, “Advanced sliding mode control techniques for inverted pendulum: Modelling and simulation”, Engineering science and technology, an international journal, vol. 21, no. 4, 2018, 753–759, 10.1016/j.jestch.2018.06.010.
  • [6] A. Kathpal and A. Singla, “Simmechanics™ based modeling, simulation and real-time control of rotary inverted pendulum”. In: 2017 11th International Conference on Intelligent Systems and Control (ISCO), vol. 1, no. 1, 2017, 166–172, 10.1109/ISCO.2017.7855975.
  • [7] V. Kumar and R. Agarwal, “Modeling and control of inverted pendulum cart system using pid-lqrbased modern controller”. In: 2022 IEEE Students Conference on Engineering and Systems (SCES), vol. 1, no. 1, 2022, 01–05, 10.1109/SCES55490.2022.9887706.
  • [8] B. Lima, R. Cajo, V. Huilcapi, and W. Agila, “Modeling and comparative study of linear and non-linear controllers for rotary inverted pendulum”. In: Journal of Physics: Conference Series, vol. 783, no. 1, 2017, 012047, 10.1088/1742-6596/783/1/012047.
  • [9] N. J. Mathew, K. K. Rao, and N. Sivakumaran, “Swing up and stabilization control of a rotary inverted pendulum”, IFAC Proceedings Volumes, Vol. 46, no. 32, 2013, 654–659, 10.3182/20131218-3-IN-2045.00128, 10th IFAC International Symposium on Dynamics and Control of Process Systems.
  • [10] A. Nagarajan and A. A. Victoire, “Optimization reinforced pid-sliding mode controller for rotary inverted pendulum”, IEEE Access, vol. 11, 2023, 24420–24430, 10.1109/ACCESS.2023.3254591.
  • [11] A. Nasir, R. Ismail, and M. Ahmad, “Performance comparison between sliding mode control (smc) and pd-pid controllers for a nonlinear inverted pendulum system”, World Academy of Science, Engineering and Technology, vol. 71, 2010, 400–405, 10.5281/zenodo.1055423.
  • [12] S. R. Nekoo, “Digital implementation of a continuous-time nonlinear optimal controller: An experimental study with real-time computations”, ISA Transactions, vol. 101, 2020, 346–357, 10.1016/j.isatra.2020.01.020.
  • [13] T.-V.-A. Nguyen, B.-T. Dong, and N.-T. BUI, “Enhancing stability control of inverted pendulum using takagi–sugeno fuzzy model with disturbance rejection and input–output constraints”, ScientiFic Reports, vol. 13, no. 1, 2023, 14412.
  • [14] V.-A. Nguyen, D.-B. Pham, D.-T. Pham, N.-T. Bui, and Q.-T. Dao, “A hybrid energy sliding mode controller for the rotary inverted pendulum”. In: International Conference on Engineering Research and Applications, vol. 602, no. 1, 2022, 34–41, 10.1007/978-3-031-22200-9_4.
  • [15] L. B. Prasad, B. Tyagi, and H. O. Gupta, “Optimal control of nonlinear inverted pendulum system using pid controller and lqr: performance analysis without and with disturbance input”, International Journal of Automation and Computing, vol. 11, 2014, 661–670, 10.1007/s11633-014-0818-1.
  • [16] O. Qasem, H. Gutierrez, and W. Gao, “Experimental validation of data-driven adaptive optimal control for continuous-time systems via hybrid iteration: An application to rotary inverted pendulum”, IEEE Transactions on Industrial Electronics, vol. 1, no. 1, 2023, 1–11, 10.1109/TIE.2023.3292873.
  • [17] E. Susanto, B. Rahmat, and M. Ishitobi, “Stabilization of rotary inverted pendulum using proportional derivative and fuzzy controls”. In: 2022 9th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), vol. 1, no. 1, 2022, 34–37, 10.1109/ICITACEE55701.2022.9924142.
  • [18] H. Wang, H. Dong, L. He, Y. Shi, and Y. Zhang, “Design and simulation of lqr controller with the linear inverted pendulum”. In: 2010 international conference on electrical and control engineering, vol. 1, no. 1, 2010, 699–702, 10.1109/iCECE.2010.178.
  • [19] L. Wang, H. Ni, W. Zhou, P. M. Pardalos, J. Fang, and M. Fei, “Mbpoa-based lqr controller and its application to the double-parallel inverted pendulum system”, Engineering Applications of ArtiFicial Intelligence, vol. 36, 2014, 262–268, 10.1016/j.engappai.2014.07.023.
  • [20] J. Yu and X. Zhang, “The global control of first order rotary parallel double inverted pendulum system”. In: 2021 40th Chinese Control Conference (CCC), vol. 1, no. 1, 2021, 2773–2778, 10.23919 /CCC52363.2021.9549400.
  • [21] J. Zhang, P. Shi, Y. Xia, and H. Yang, “Discrete-time sliding mode control with disturbance rejection”, IEEE Transactions on Industrial Electronics, vol. 66, no. 10, 2
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92b999e2-c2f6-42a4-843a-f29be4c78f3e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.