Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Thanaka powder is a natural and safe biomass material that can be used in the preparation of Pickering emulsions. It contains lots of hydrophilic phenolic hydroxyl groups, making it highly hydrophilic and leading to emulsion instability, which further limits its application in the cosmetics industry. In this paper, Thanaka powder was modified to improve its stability. The modified Thanaka powder was characterized and was used to prepare Pickering emulsions. The results showed that the stability of the Pickering emulsion increased with the increase of the solid particle concentration; the suitable oil-water ratio helped to obtain the Pickering emulsion with good stability; the different aqueous phase environments had little effect on the particle size variation of the emulsified particles; the emulsions exhibited shear thinning behavior. This study offers valuable insights into the research, development, and commercialization of Thanaka-based skincare products, thereby expanding the applications of Thanaka powder.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
44--53
Opis fizyczny
Bibliogr. 54 poz., rys., tab., wykr., wz.
Twórcy
autor
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
- The Oriental Beauty Valley Research Institute, Shanghai 201403, China
autor
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
- The Oriental Beauty Valley Research Institute, Shanghai 201403, China
autor
- Shanghai Maikunte Medicine Technology Co., LTD, Shanghai, China
autor
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
autor
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
- The Oriental Beauty Valley Research Institute, Shanghai 201403, China
autor
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
- The Oriental Beauty Valley Research Institute, Shanghai 201403, China
Bibliografia
- 1. Pickering, S.U. (1907). CXCVI.-Emulsions. J. Chem. Soc. Trans. 91, 2001–2021. DOI: 10.1039/CT9079102001.
- 2. Zhou, D., Zhang, Z., Tang, J., Zhao, J. & Liao, L. (2017). Effect of emulsification processes on the stability of Pickering emulsions stabilized by organomontmorillonites. J. Disper. Sci. Technol. 38(7), 1030–1034. DOI: 10.1080/01932691.2016.1218343.
- 3. Guo, X., Li, X., Chan, L., Huang, W. & Chen, T. (2021). Edible CaCO3 nanoparticles stabilized Pickering emulsion as calcium-fortified formulation. J. Nanobiotechnol. 19(1), 1–16. DOI: 10.1186/s12951-021-00807-6.
- 4. Wang, Y. (2017). Study on Modificon of shell powder and application. Master’s dissertation, Dalian Polytechnic University, Dalian, China.
- 5. Gong, X., Wang, Y. & Chen, L. (2017). Enhanced emulsifying properties of wood-based cellulose nanocrystals as Pickering emulsion stabilizer. Carbohyd. Polym. 169, 295–303. DOI: 10.1016/j.carbpol.2017.04.024.
- 6. Kalashnikova, I., Bizot, H., Cathala, B. & Capron, I. (2011). New Pickering emulsions stabilized by bacterial cellulose nano-crystals. Langmuir, 27(12), 7471–7479. DOI: 10.1021/la200971f.
- 7. Lu X., Zhang H., Li Y. & Huang, Q. (2018). Fabrication of milled cellulose particles-stabilized Pickering emulsions. Food Hydrocolloid. 77, 427–435. DOI: 10.1016/j.foodhyd.2017.10.019.
- 8. Zhang, X., Luo, X., Wang, Y., Li, Y., Li, B. & Liu, S. (2020). Concentrated O/W Pickering emulsions stabilized by soy protein/cellulose nanofibrils: Influence of pH on the emulsification performance. Food Hydrocolloid. 108, 106025. DOI: 10.1016/j.foodhyd.2020.106025.
- 9. Zhang, Z., Tam, K.C., Wang, X. & Sèbe, G. (2018). Inverse Pickering Emulsions Stabilized by Cinnamate Modified Cellulose Nanocrystals as Templates to Prepare Silica Colloidosomes. ACS Sustainable Chem. Eng. 6, 2583–2590. DOI: 10.1021/acssuschemeng.7b04061.
- 10. Zhao, H., Yang, Y., Chen, Y., Li, J., Wang, L. & Li, C. (2022). A review of multiple Pickering emulsions: Solid stabilization, preparation, particle effect, and application [J]. Chem. Eng. Sci. 248, 117085. DOI: 10.1016/j.ces.2021.117085.
- 11. Sarkar, A., Zhang, S., Holmes, M. & Ettelaie, R. (2019). Colloidal aspects of digestion of Pickering emulsions: Experiments and theoretical models of lipid digestion kinetics. Adv. Colloid Interfac. Sci. 263, 195–211. DOI: 10.1016/j.cis.2018.10.002.
- 12. Thompson, K.L., Derry, M.J., Hatton, F.L. Armes, S.P. (2018). Long-Term Stability of n-Alkane-in-Water Pickering Nanoemulsions: Effect of Aqueous Solubility of Droplet Phase on Ostwald Ripening. Langmuir 34(31), 9289–9297. DOI: 10.1021/acs.langmuir.8b01835.
- 13. Aveyard, R., Binks, B.P. & Clint, J.H. (2003). Emulsions stabilised solely by colloidal particles. Adv. Colloid Interfac. Sci. 100, 503–546. DOI: 10.1016/S0001-8686(02)00069-6.
- 14. Binks, B.P. (2002).Particles as surfactants—similarities and differences. Curr. Opin. Colloid. In. Sci.7(1-2), 21–41. DOI: 10.1016/S1359-0294(02)00008-0.
- 15. Binks, B.P. & Clint, J.H. (2002). Solid Wettability from Surface Energy Components: Relevance to Pickering Emulsions. Langmuir,18(4), 1270–1273. DOI: 10.1021/la011420k.
- 16. Wu, F., Deng, J., Hu, L., Zhang, Z., Jiang, H., Li, Y., Yi, Z. &Ngai, To. (2020). Investigation of the stability in Pickering emulsions preparation with commercial cosmetic ingredients. Colloid Surface. A 602(1), 125082. DOI: 10.1016/j.colsurfa.2020.125082.
- 17. Rayner, M., Marku, D., Eriksson, M., Sjöö, M., Dejmek, P. & Wahlgren, M. (2014). Biomass-based particles for the formulation of Pickering type emulsions in food and topical applications. Colloid Surface. A 458(1), 48–62. DOI: 10.1016/j.colsurfa.2014.03.053.
- 18. Wouters, A.G. & Delcour, J.A. (2019). Cereal protein based nanoparticles as agents stabilizing air-water and oil-water interfaces in food systems. Curr. Opin. Food Sci. 25, 19–27. DOI: 10.1016/j.cofs.2019.02.002.
- 19. Peito, S., Peixoto, D., Ferreira-Faria, I., Martins, A.M., Ribeiro, H.M., Veiga, F. & Marto, J. (2022). Nano- and microparticle-stabilized Pickering emulsions designed for topical therapeutics and cosmetic applications . Int. J. Pharmaceut. 615, 121455. DOI: 10.1016/j.ijpharm.2022.121455.
- 20. Liu, C.F., Sun, R.C., Zhang, A.P., Ren, J.L., Wang, X.A., Qin, M.H., Chao, Z.N. & Luo, W. (2007). Homogeneous modification of sugarcane bagasse cellulose with succinic anhydride using a ionic liquid as reaction medium. Carbohydr. Res. 342(7), 919–926. DOI: 10.1016/j.carres.2007.02.006.
- 21. Saidane, D., Perrin, E., Cherhal, F., Guellec, F. & Capron, I. (2016). Some modification of cellulose nanocrystals for functional Pickering emulsions. Phil. Trans. R. Soc. A 374, 20150139. DOI: 10.1098/rsta.2015.0139.
- 22. Yin, C., Wei, X., Li, J. & Wang, F. (2012).The Research Progress of Cellulose Modification Technology. Guangdong Chem. Ind. 39(15), 17–19.
- 23. Ding, M., Zhang, T., Zhang, H., Tao, N., Wang, X. & Zhong J. (2019). Effect of preparation factors and storage temperature on fish oil-loaded crosslinked gelatin nanoparticle pickering emulsions in liquid forms. Food Hydrocolloid. 95, 326–335. DOI: 10.1016/j.foodhyd.2019.04.052.
- 24. Teo, A., Lee, S.J., Goh, K.K.T. & Wolber, F.M. (2017). Kinetic stability and cellular uptake of lutein in WPI-stabilised nanoemulsions and emulsions prepared by emulsification and solvent evaporation method. Food Chem. 221, 1269–1276. DOI: 10.1016/j.foodchem.2016.11.030.
- 25. Azubuike, C.P. & Okhamafe, A.O. (2012). Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs. Int. J. Recycling Org. Waste Agric. 1(1), 9. DOI: 10.1186/2251-7715-1-9.
- 26. Kaushik, M., Basu, K., Benoit, C., Citriu, C.M., Vali, H. & Moores, A. (2015). Cellulose Nanocrystals as Chiral Inducers: Enantioselective Catalysis and Transmission Electron Microscopy 3D Characterization. J. Am. Chem. Soc. 137(19), 6124–6127. DOI: 10.1021/jacs.5b02034.
- 27. Aung, N.N. (2014). Evaluation of myanmar thanakha (Hesperethusa Crenulata (Roxb.) M. Roem) and processing of its. Ind. Chem. 2(2), 108–118.
- 28. Aung, H.M., Kanpipit, N., Thapphasaraphong, S. (2024). Effects of Thanaka (Hesperethusa crenulata) Stem Bark Extract on Collagen Activation and Anti-Melanogenesis for Cosmetic Applications. Trop. J. Nat. Prod. Res. 8(1), 5852–5860. DOI: 10.26538/tjnpr/v8i1.21.
- 29. Lim, M.W., Tang, Y.Q., Aroua, M.K., Gew, L.T. (2024). Glycerol Extraction of Bioactive Compounds from Thanaka (Hesperethusa crenulata) Bark through LCMS Proffling and Their Antioxidant Properties, ACS Omega 9, 14388–14405. DOI: 10.1021/acsomega.4c00041.
- 30. Lim, M.W., Aroua, M.K., Gew, L.T. (2021). Thanaka (H. crenulata, N. crenulata, L. acidissima L.): A Systematic Review of Its Chemical, Biological Properties and Cosmeceutical Applications. Cosmetics 8, 68. DOI: 10.3390/cosmetics8030068.
- 31. Shorey, R. & Mekonnen, T.H. (2023). Esterification of lignin with long chain fatty acids for the stabilization of oil-in-water Pickering emulsions. Int. J. Biol. Macromol. 230, 123–143. DOI: 10.1016/j.ijbiomac.2023.123143.
- 32. Singha, A.S., Thakur, V.K., Mehta, I.K., Shama, A., Khanna, A.J., Rana, P.K. & Rana, A.K. (2009). Surface-modified Hibiscus sabdariffa fibers: Physicochemical, thermal, and morphological properties evaluation. Int. J. Polym. Anal. Ch. 14(8), 695–711. DOI: 10.1080/10236660903325518.
- 33. Boldyrev, V.V. (1998). Mechanical Activation and its Application in Technology. Materials Science Forum 269–272, 227–234. DOI: 10.4028/www.scientific.net/MSF.269-272.227.
- 34. Fahmy, T.Y.A., Mobarak, F. & El-Meligy, M.G. (2008). Introducing undeinked old newsprint as a new resource of electrical purposes paper. Wood Sci. Technol. 42(8), 691–698. DOI: 10.1007/s00226-008-0180-y.
- 35. Baiardo, M., Frisoni, G., Scandola, M. & Licciardello, A. (2002). Surface chemical modification of natural cellulose fibers. J. Appl. Polym. Sci. 83(1), 38–45. DOI: 10.1002/app.2229.
- 36. Nypelö, T., Laine, C., Aoki, M., Tammelin, T. & Henniges, U. (2016). Etherification of Wood-Based Hemicelluloses for Interfacial Activity. Biomacromolecules 17(5), 1894–1901. DOI: 10.1021/acs.biomac.6b00355.
- 37. Zhang, W., Li, L., Ou, W., Song, L. & Zhang, Q. (2018). Hydrophobic modification of hemp powders for their application in the stabilization of Pickering emulsions. Cellulose 25, 4107–4120. DOI: 10.1007/s10570-018-1848-6.
- 38. Punyamurthy, R., Sampathkumar, D., Srinivasa, C.V. & Bennehalli, B. (2012). Effect of alkali treatment on water absorption of single cellusosic abaca fiber. Bio. Res. 7, 3515–3524. DOI: 10.15376/biores.7.3.3515-3524.
- 39. Singha, A.S., Thakur, V.K., Mehta, I.K., Shama, A., Khanna, A.J., Rana, R.K. & Rana, A.K. (2009). Surface-Modified Hibiscus sabdariffa Fibers: Physicochemical, Thermal, and Morphological Properties Evaluation. Int. J. Polym. Anal. Ch. 14(8), 695–711. DOI: 10.1080/10236660903325518.
- 40. George, M., Mussone, P.G. & Bressler, D.C. (2014). Surface and thermal characterization of natural fibres treated with enzymes. Ind. Crop. Prod. 53, 365–373. DOI: 10.1016/j.indcrop.2013.12.037.
- 41. Reed, A.R. & Williams, P.T. (2004). Thermal Processing of Biomass Natural Fibre Wastes by Pyrolysis. Int. J. Energ. Res. 28(2), 131–145. DOI: 10.1002/er.956.
- 42. Zhang, X., Shao, Z., Zhou, Y., Wei, J., He, W., Wang, S., Dai, X. & Ren, J. (2019). Redispersibility of cellulose nanoparticles modified by phenyltrimethoxysilane and its application in stabilizing Pickering emulsions. J. Mater. Sci. 54(17), 11713–11725. DOI: 10.1007/s10853-019-03691-6.
- 43. Li, C., Li, Y., Sun, P. & Yang, C. (2013). Pickering emulsions stabilized by native starch granules. Colloid Surface A 431(33), 142–149. DOI: 10.1016/j.colsurfa.2013.04.025.
- 44. Yang, Y., Fang, Z., Chen, X., Zhang, W., Xie, Y., Chen, Y., Liu, Z. & Yuan, W. (2017). An Overview of Pickering Emulsions: Solid-Particle Materials, Classification, Morphology, and Applications. Front. Pharmacol. 8, 1-20. DOI: 10.3389/fphar.2017.00287.
- 45. Mwaikambo, L.Y. & Ansell, M.P. (2002). Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J. Appl. Polym. Sci. 84(12), 2222–2234. DOI: 10.1002/app.10460.
- 46. Roy, D., Semsarilar, M., Guthrie, J.T. & Perrier, S. (2009). Cellulose modification by polymer grafting: a review. Chem. Soc. Rev. 38(7), 2046–2064. DOI: 10.1039/B808639G.
- 47. Xu, G., Nigmatullin, R. & Koev, T.T. (2022). Octylamine-Modified Cellulose Nanocrystal-Enhanced Stabilization of Pickering Emulsions for Self-Healing Composite Coatings. ACS Appl. Mater. Interfaces 14(10), 12722–12733. DOI: 10.1021/acsami.2c01324.
- 48. Lotierzo, A. & Bon, S.A.F. (2017). A mechanistic investigation of Pickering emulsion polymerization. Polym. Chem. 8(34), 1–13. DOI: 10.1039/C7PY00308K.
- 49. Röhl, S., Hohl, L., Kempin, M., Enders, F., Jurtz, N. & Kraume, M. (2019). Influence of Different Silica Nanoparticles on Drop Size Distributions in Agitated Liquid-Liquid Systems. Chem. Ing. Tech. 91(17), 1–17. DOI: 10.1002/cite.201900049.
- 50. Wei, Y., Tong, Z., Dai, L., Wang, D., Lv, J., Mao, L. & Gao, Y. (2020). Influence of interfacial compositions on the microstructure, physiochemical stability, lipid digestion and β-carotene bioaccessibility of Pickering emulsions. Food Hydro-colloid 104(1-2), 105738. DOI: 10.1016/j.foodhyd.2020.105738.
- 51. Zhang, Q., Shen, X., Zhang, D., Jiang, W., Lei, J. & Zhang, W. (2021). Fabrication and characterization of novel high internal Pickering emulsions stabilized solely by ultrafine pearl powder. Colloid. Surface. A 624, 126797. DOI: 10.1016/j.colsurfa.2021.126797.
- 52. Marefati, A., Matos, M., Wiege, B., Haase, N.U., Rayner, M. (2018). Pickering emulsifiers based on hydrophobically modified small granular starches Part II – Effects of modification on emulsifying capacity. Carbohyd. Polym. 201, 416–424, DOI: 10.1016/j.carbpol.2018.08.049.
- 53. Tcholakova, S., Denkov, N.D. & Lips, A. (2008). Comparison of solid particles, globular proteins and surfactants as emulsifiers. Phys. Chem. Chem. Phys. 10(12), 1608–1627. DOI: 10.1039/b715933c.
- 54. Hui, Y., Huang, F., Zhu, L., Ning, J., Zhang, R. & He, Y. (2021). Preparation of O/W Pickering emulsions and their ultraviolet absorption performance. Appl. Chem. Ind. 1(50), 83–86.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92b1152a-a769-4d50-b87c-916f666bbfdf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.