PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synergistic solvent extraction of Co(II) and Li(I) from aqueous chloride solutions with mixture of Cyanex 272 and TBP

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, separation of cobalt(II) over lithium(I) ions from aqueous chloride solutions by synergistic solvent extraction (SX) has been studied. A synergistic mixture of commercial extractants such as bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272) and tributyl phosphate (TBP) in kerosene was used as a selective extractant. The investigations were first performed to select optimal conditions for the effective separation including pH of the aqueous phase as well as concentration of synergistic mixture. High selective solvent extraction of cobalt(II) over lithium(I) from chloride solution has been achieved by the mixture of 0.1 M Cyanex 272 and 0.05 M TBP in kerosene while efficient Co(II) stripping has been performed by 0.5 M sulphuric acid.
Słowa kluczowe
Rocznik
Strony
353--364
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Department of Chemistry, Czestochowa University of Technology, Armii Krajowej 19, 42-200 Czestochowa, Poland
Bibliografia
  • BANDA R., JEON H., LEE M., 2012, Solvent extraction separation of Pr and Nd from chloride solution containing La using Cyanex 272 and its mixture with other extractants. Sep. Purif. Technol. 98, 481-487.
  • BARNARD K.R., KELLY N.J., SHIERS D.W., 2014, Chemical reactivity between bis(2-ethylhexyl) phosphoric acid (D2EHPA) and tributyl phosphate. Hydrometallurgy, 146, 1-7.
  • BATCHU N.K., SONU CH.H., LEE M.S., 2014, Solvent extraction equilibrium and modeling studies of manganese from sulfate solutions by a mixture of Cyanex 301 and TBP. Hydrometallurgy, 144–145, 1–6.
  • CHAGNES A., POSPIECH B., 2013, A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries. J. Chem. Technol. Biotechnol., 88 (7) 1191–1199.
  • CHMIELEWSKI A.G., URBAŃSKI T.S., MIGDAŁ W., 1997, Separation technologies for metals recovery from industrial wastes. Hydrometallurgy, 45, 333-344.
  • DEVI N.B., NATHSARMA K.C., CHAKRAVORTTY V., 1994, Sodium salts of D2EHPA, PC-88A and Cyanex 272 and their mixtures as extractants for cobalt(II). Hydrometallurgy, 34, 331-342.
  • GANDHI M.N., DEORKAR N.V., KHOPKAR S.M., 1993, Solvent extraction separation of cobalt(II) from nickel(II) and other metals with Cyanex 272. Talanta, 40, 1535-1539
  • GEGA J., WALKOWIAK W., GAJDA B., 2001. Separation of Co(II) and Ni(II) ions by supported and hybrid liquid membrane. Sep. Purif. Technol. 22-23, 551-558.
  • KOLODYNSKA D., HUBICKA H., HUBICKI Z., 2008, Sorption of heavy metal ions from aqueous in the presence of EDTA on monodisperse anion exchangers. Desalination, 227, 150.
  • KOZLOWSKI C.A., KOZLOWSKA J., PELLOWSKI W., WALKOWIAK W., 2006. Separation of cobalt-60, strontium-90, and cesium-137 radioisotopes by competitive transport across polymer inclusion membranes with organophosphorous acids. Desalination 198, 149-156.
  • LI W., WANG X., MENG S., LI D., XIONG Y., 2007, Extraction and separation of yttrium from the rare earths with sec-octylphenoxy acetic acid in chloride media. Sep. Purif. Technol., 54, 164–169.
  • MARCHESE J., CAMPEDROS M., A., COSTA A., 1995. Transport and separation of cobalt, nickel and copper ions with Alamine 336 liquid membranes. J. Chem. Tech. Biotechnol., 64, 293-297.
  • OCHROMOWICZ K., CHMIELEWSKI T., 2013. Solvent extraction of copper(II) from concentrated leach liquors, Physicochem. Probl. Miner. Process. 49(1), 357-367..
  • POSPIECH B., 2010, Studies on iron(III) removal from chloride aqueous solutions by solvent extraction and transport through polymer inclusion membranes with D2EHPA, Physicochem. Probl. Miner. Process., 44, 195-204.
  • POSPIECH B., 2013, Hydrometallurgical recovery of cobalt(II) from acidic chloride solutions by transport through polymer inclusion membranes. Physicochem. Probl. Miner. Process., 49, 641-649.
  • POSPIECH B., 2014(a), Selective recovery of cobalt(II) towards lithium(I) from chloride media by transport across polymer inclusion membrane with triisooctylamine. Pol. J. Chem. Technol. 16, 15-20.
  • POSPIECH B., 2014(b), Synergistic solvent extraction and transport of Zn(II) and Cu(II) across polymer inclusion membranes with mixture of TOPO and Aliquat 336. Sep. Sci. Technol. 49, 1706-1712.
  • POSPIECH B., 2015, Highly efficient facilitated membrane transport of palladium(II) ions from hydrochloric acid solutions through plasticizer membranes with Cyanex 471X. Physicochem. Probl. Min. Process., 51, 281-291.
  • POSPIECH B., CHAGNES A., 2015, Highly selective solvent extraction of Zn(II) and Cu(II) from acidic aqueous chloride solutions with mixture of Cyanex 272 and Aliquat 336. Sep. Sci. Technol. 50, 1302-1309.
  • PRESTON J.S., 1982, Solvent extraction of cobalt and nickel by organophosphorus acids. Comparison of phosphoric, phosphonic and phosphinic acid systems. Hydrometallurgy 9, 115-133.
  • RAFIGHI P., YAFTIAN M.R., NOSHIRANZADEH N., 2010, Solvent extraction of cobalt(II) ions; cooperation of oximes and neutral donors. Sep. Purif. Technol., 75, 32-38.
  • RICKELTON W.A., BOYLE R.J., 1988, Solvent extraction with organophosphines commercial & potential applications. Sep. Sci. Technol., 23, 227-1250.
  • SARANGI K., REDDY B.R., DAS R.P., 1999, Extraction studies of cobalt(II) and nickel(II) from chloride solutions using Na-Cyanex 272. Separation of Co(II)/Ni(II) by the sodium salts of D2EHPA, PC88A and Cyanex 272 and their mixtures. Hydrometallurgy, 52, 253-265.
  • SUN L., QIU K., 2011, Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries. J. Hazard. Mater., 194, 378-384.
  • SWAIN B., JEONG J., LEE J., LEE G., 2007, Extraction of Co(II) by supported liquid membrane and solvent extraction using Cyanex 272 as an extractant: A comparison study. J. Membr. Sci., 288, 139-148.
  • WANG X., GAUSTAD G., BABBITT C.W., RICHA K., 2014, Economies of scale for future lithium-ion battery recycling infrastructure, Resour. Conserv. Recy., 83, 53-62.
  • WIONCZYK B., 2013, Kinetic modeling of chromium(III) extraction with Aliquat 336 from alkaline aqueous solutions containing chlorides, Physicochem. Probl. Miner. Process. 49(2), 2013, 587−605.
  • XU J., THOMS H.R., FRANCIS R.W., LUM K.R., WANG J., LIANG B., 2008, A review of processes and technologies for the recycling of lithium-ion secondary batteries, J. Power Sources, 177, 512-527.
  • ZENG X., LI J., SINGH N., 2014, Recycling of Spent Lithium-Ion Battery: a Critical Reviews, Environ. Sci. Technol., 44, 1129-1165.
  • ZHAN G.P., YOKOYAMA T., SUZUKI T.M., INOUE K., 2001, The synergistic extraction of nickel and cobalt with a mixture of di(2-ethylhexyl) phosphoric acid and 5-dodecylsalicylaldoxyme. Hydrometallurgy 61, 223-227.
  • ZHU Z.; ZHANG W.; CHENG C.Y., 2012, A synergistic solvent extraction system for separating copper from iron in high chloride concentration solutions. Hydrometallurgy, 113-114, 155-159.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92b0b717-5d7f-45cb-91e7-b773a09cb004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.