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AN APPLICATION OF THE PYTHAGOREAN FUZZY 

SETS IN THE FAULT DIAGNOSIS 

Zastosowanie zbiorów rozmytych Pitagorasa 

w technicznej diagnostyce 

Abstract: In this paper, a comprehensive review and critical analyses of methods based on 

the ordinary fuzzy set, Atanassov’s intuitionistic fuzzy set, and its extensions have been 

conducted to show their limitations and defects. Then, a novel similarity measure based on 

the generalized score function has been introduced that incorporates the significance 

(importance) of information, making it more intuitive to compare them. The proposed 

method is employed for the fault diagnosis of steam turbine generator unit under 

Pythagorean fuzzy environment. Ten fault types of rotating machines are established as 

failure patterns in nine different vibration frequency ranges, expressed in terms of 

Pythagorean fuzzy numbers. The superiority of the proposed method in dealing with 

uncertain and vague information is shown by comparing it with some existing measures in 

numerical examples. 

Keywords: Pythagorean fuzzy set, score function, similarity measure, fault diagnosis, 

steam turbine generator 

Streszczenie: W artykule dokonano kompleksowego przeglądu i analiz krytycznych metod 

opartych na klasycznym zbiorze rozmytym lub intuicjonistycznym zbiorze rozmytym 

Atanassova i ich rozszerzeniach w celu wykazania ich ograniczeń i wad. Następnie 

wprowadzono na podstawie miary wiedzy, nową miarę podobieństwa, która uwzględnia 

znaczenie (ważność) informacji, czyniąc je bardziej intuicyjnymi przy ich porównywaniu. 

Zaproponowaną metodę weryfikuje się w przypadku diagnozowania uszkodzeń zespołu 

turbogeneratora w rozmytym środowisku. Dziesięć typów uszkodzeń turbogeneratora jest 

określanych jako wzorce uszkodzeń wyrażonych za pomocą liczb rozmytych Pitagorasa 

opisujących ich symptomy w dziewięciu różnych zakresach częstotliwości drgań. Poprzez 

porównanie z niektórymi istniejącymi miarami w kilku przykładach liczbowych pokazano 

przewagę proponowanej metody w opisaniu niedokładnych i niepewnych informacji. 

Słowa kluczowe: zbiory rozmyte Pitagorasa, miara wiedzy, miara podobieństwa, 

diagnostyka techniczna, turbo-generator 
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1. Introduction 

The fault diagnosis of a technical system is critical for its status monitoring in operation 

and maintenance. Signal-based fault diagnosis is the most popular approach in machine 

health monitoring. The typical signals used for diagnosing can be vibration signal [4], 

acoustic emission signal [13] or current signal [3]. Among them, vibration signal analysis 

is the most widely used method to identify some particular faults because it is easy to  

measure and can provide highly accurate information about the machine’s health condition 

[15]. Nowadays, most of the fault diagnosis methods are usually based on the vibration 

signals or the signals transformed from the vibration signals based upon several popular 

signal processing techniques, including fast Fourier transform (FFT), wavelet transform 

(WT), and short-time Fourier transform (STFT). The fault diagnosis performance of the 

signal-based approach highly depends on the procedure of feature extraction in which 

characteristic features are extracted from vibration signals. After extracting the fault 

features from the fault signals, an intelligent decision-maker based on machine learning 

algorithms is used to determine the type of fault occurring. Traditionally, feature extraction 

exploits signal processing techniques to extract information from the fault signal in the time 

domain, frequency domain, and time-frequency domain [11]. However, the diagnosing 

accuracy of the traditional approaches depends on the signal processing technique and 

requires expert knowledge [6]. Due to the expert knowledge requirement, it is difficult to 

suggest a generalized framework for feature extraction. Although classical machine 

learning models, such as support vector machine (SVM) and k-nearest neighbour, have 

achieved remarkable progress over the past years, some drawbacks still exist when facing 

higher industrial requirements [5]. 

The first concept of intuitionistic fuzzy set (IFS) was introduced by Atanassov as a 

generalization of fuzzy set (FS) theory. The IFS can be viewed as an alternative approach 

to an ordinary fuzzy set to deal with imperfect information. The uncertainty of information 

is expressed by a membership function μ(x) in FSs. But in IFSs, it is represented by 

membership μ(x), and non-membership μ(x) functions, as shown in Fig. 1. 

Fig. 1. Example triangular membership and non-membership functions of the IFS 
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As an extension of the IFS, the Pythagorean fuzzy set (PFS) originally proposed by 

Yager [14] was regarded to be more flexible in expressing vague and uncertain information 

due to its bigger domain, where the sum of the squared membership and non-membership 

degrees must be less than or equal to 1 (see Fig. 2). 

 

 

Fig. 2. The domain comparison of the IFS and PFS methods 

 

Since then, more and more methods for PFSs have been developed and widely used in 

many areas such as image clustering and partitioning, pattern recognition, medical diagnosis 

and multi-criteria decision-making (MCDM). For instance, Yager [14] developed a useful 

decision method based on Pythagorean fuzzy aggregation operators to handle Pythagorean 

fuzzy MCDM problems. Zhang and Xu [18] provided the detailed mathematical expression 

for PFS and introduced the concept of Pythagorean fuzzy number (PFN). Meanwhile, they 

also developed a Pythagorean fuzzy TOPSIS (Technique for Order Preference by Similarity 

to Ideal Solution) for handling the MCDM problem within PFNs. Peng and Yang [10] 

proposed the division and subtraction operations for PFNs. Also, they developed a 

Pythagorean fuzzy superiority and inferiority ranking method to solve multicriteria group 

decision-making problem with PFNs.  

Several definitions of similarity measures between IFSs have been proposed recently. 

However, they have been proved to be unreasonable in some cases. For example, Li et al. 

[7] examined a comparative analysis of several existing similarity measures and pointed out 

their unreasonable cases in pattern recognition. Also, Papakostas et al. [9] studied  the main 

properties of the existing distance and similarity measures for IFSs.  Based on the 

transformation into the symmetric triangular fuzzy numbers, Zhang and Yu [16] presented 

a new similarity measure between IFSs. Similarly, Chen and Chang [2] presented a 

transformation-based similarity measure and adapted it to the pattern recognition problems. 

However, it has been shown to be also counterintuitive [8]. 

Inspired by these limitations, in this paper, we present a similarity measure for  PFSs. 

The proposed measure is defined based on the amount and significance of information 

depicted in the PFSs.  The rest of the paper is organized as follows. In Section II, basic 

concepts of PFSs are reviewed and some critical analyses of the existing methods for PFSs 

are conducted. In Section III, generalized  knowledge measure, knowledge-based score 

function and similarity measure for PFSs with their axiomatic properties are introduced.  
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Section IV illustrates the advantages of the proposed generalized score function in 

differentiating and ranking the PFSs by some comparative numerical examples. Section V 

shows the effectiveness of the proposed similarity measure in applications for pattern 

recognition and medical diagnosis problems. Finally, Section VI provides concluding 

remarks. 

2. Preliminaries 

A. Pythagorean Fuzzy Sets 

In 2013, R.R. Yager [14] provided two basic representations for PFS by polar 

coordinates and membership degrees, respectively. In the following, we recall the general 

definition of PFS, which is similar to the definition of IFS. 

Definition 1. [1] A PFS 𝑷 in a finite universe of discourse 𝑿 = {𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏} is an object 

with the following form: 

 𝑷 = {〈𝒙𝒊, 𝝁𝑷(𝒙𝒊), 𝝂𝑷(𝒙𝒊)〉|𝒙𝒊 ∈ 𝑿}, (1) 

 

where 𝝁𝑷(𝒙𝒊), 𝝂𝑷(𝒙𝒊) ∈ [𝟎, 𝟏] denote the membership degree and the non-membership 

degree of an element 𝒙𝒊 to PFS 𝑷, respectively, such that 𝒙𝒊 ∈ 𝑿, 

 

 (𝝁𝑷(𝒙𝒊))
𝟐

+ (𝝂𝑷(𝒙𝒊))
𝟐

≤ 𝟏 .  (2) 

The hesitancy degree of 𝒙𝒊 to PFS 𝑷 is given by: 

 𝝅𝑷(𝒙𝒊) = √𝟏 − (𝝁𝑷(𝒙𝒊))
𝟐

− (𝝂𝑷(𝒙𝒊))
𝟐
.  (3) 

For convenience, we denote a single-valued PFS as Pythagorean fuzzy number (PFN) by 

𝑷 = 〈𝝁𝑷, 𝝂𝑷〉.  

Afterwards,  on the basis of relationship between IFS and PFS, Zhang and Xu [18] 

defined some operation for PFS as follows: 

 

Definition 2. Let 𝑷𝟏 = 〈𝝁𝑷𝟏
, 𝝂𝑷𝟏

〉 and 𝑷𝟐 = 〈𝝁𝑷𝟐
, 𝝂𝑷𝟐

〉 be two PFNs and 𝜶 > 𝟎, then the 

operations on PFNs are defined in [18] as: 

 

 𝑷𝟏⨁𝑷𝟐 = ⟨√(𝝁𝑷𝟏
)

𝟐
+ (𝝁𝑷𝟐

)
𝟐

− (𝝁𝑷𝟏
)

𝟐
(𝝁𝑷𝟐

)
𝟐

, 𝝂𝑷𝟏
𝝂𝑷𝟏

⟩,  (4) 
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 𝑷𝟏⨂𝑷𝟐 = ⟨𝝁𝑷𝟏
𝝁𝑷𝟏

, √(𝝂𝑷𝟏
)

𝟐
+ (𝝂𝑷𝟐

)
𝟐

− (𝝂𝑷𝟏
)

𝟐
(𝝂𝑷𝟐

)
𝟐

⟩,  (5) 

 𝜶𝑷𝟏 = ⟨√𝟏 − (𝟏 − (𝝁𝑷𝟏
)

𝟐
)

𝜶

, (𝝂𝑷𝟏
)

𝜶
⟩,  (6) 

 (𝑷𝟏)𝜶 = ⟨(𝝁𝑷𝟏
)

𝜶
, √𝟏 − (𝟏 − (𝝂𝑷𝟏

)
𝟐

)
𝜶

⟩ , (7) 

The operating results were proved to be PFNs as well. 

They also utilized a relation between two PFNs defined in [14] as: 

 𝑷𝟏 ≥ 𝑷𝟐 iff  𝝁𝑷𝟏
≥ 𝝁𝑷𝟐

 and 𝝂𝑷𝟏
≤ 𝝂𝑷𝟐

.  (8) 

In order to compare the magnitude of PFNs, Zhang and Xu [18] defined the score function 

for PFNs applied as a score-based ranking method as follows:  

Definition 3. [18] Let 𝑷𝟏 = 〈𝝁𝑷𝟏
, 𝝂𝑷𝟏

〉 and 𝑷𝟐 = 〈𝝁𝑷𝟐
, 𝝂𝑷𝟐

〉 be two PFNs, the score 

function of PFN is defined as follows: 

 𝒔(𝑷𝟏) = (𝝁𝑷𝟏
)

𝟐
− (𝝂𝑷𝟏

)
𝟐
. (9) 

Then, a comparison law for PFNs is introduced as: 

 

If 𝒔(𝑷𝟏) < 𝒔(𝑷𝟐) then 𝑷𝟏 ≺ 𝑷𝟐, 

if  𝒔(𝑷𝟏) = 𝒔(𝑷𝟐) then 𝑷𝟏 ∼ 𝑷𝟐. 

B. Critical Analyses of the Existing Measures for PFSs 

 

Remark 1. There exits indistinguishable pairs of PFNs when using the score-based ranking 

method (9) for PFNs. In other words, in some situations, the score-based ranking method 

fails to compare the magnitude of PFNs. 

Example 1. Let 𝑷𝟏 = 〈
√𝟓

𝟑
, 𝟐/𝟑〉 and 𝑷𝟐 = 〈

𝟐

𝟑
, √𝟑/𝟑〉 be two PFNs, according to Definition 

3, we have 𝒔(𝑷𝟏) = 𝒔(𝑷𝟐)=1/9, then 𝑷𝟏 ∼ 𝑷𝟐, meaning that the relation (9) cannot 

distinguish these two. 

Remark 2.  The score-based ranking method (9) for PFNs is not held under multiplication 

by a scalar, i.e. 𝑷𝟏 ≥ 𝑷𝟐 does not necessarily imply 𝜶𝑷𝟏 ≥ 𝜶𝑷𝟐, 𝜶 > 𝟎. In other words, 

the operation (6) for PFNs is not monotone with respect to the ordering (9). 

Example 2. Let 𝑷𝟏 = 〈𝟎. 𝟓, 𝟎. 𝟒〉, 𝑷𝟐 = 〈𝟎. 𝟑, 𝟎. 𝟐〉 be two PFNs and α=0.5, then using (6) 

we have 𝜶𝑷𝟏 = 〈√𝟏 − (𝟏 − 𝟎. 𝟓𝟐)𝟎.𝟓, (𝟎. 𝟒)𝟎.𝟓〉 = 〈𝟎. 𝟑𝟔𝟔, 𝟎. 𝟔𝟑𝟐〉 and 𝜶𝑷𝟐 =

〈√𝟏 − (𝟏 − 𝟎. 𝟑𝟐)𝟎.𝟓, (𝟎. 𝟐)𝟎.𝟓〉 = 〈𝟎. 𝟐𝟏𝟒, 𝟎. 𝟒𝟒𝟕〉 respectively. According to Definition 

3, we have 𝒔(𝑷𝟏) = 𝟎. 𝟎𝟗, 𝒔(𝑷𝟐) = 𝟎. 𝟎𝟓, then 𝑷𝟏 ≻ 𝑷𝟐, whereas  𝒔(𝜶𝑷𝟏) = −𝟎. 𝟐𝟔𝟔, 
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𝒔(𝜶𝑷𝟐) = −𝟎. 𝟏𝟓𝟑, then 𝜶𝑷𝟏 ≺ 𝜶𝑷𝟐. Thus, the operation (6) for PFNs is not monotone 

with respect to the ordering (9). 

Remark 3.  Similarly, the power operation (7) for PFNs is not monotone with respect to 

the ordering (9). 

Example 3. Let 𝑷𝟏 = 〈𝟎. 𝟒, 𝟎. 𝟓〉, 𝑷𝟐 = 〈𝟎. 𝟐, 𝟎. 𝟑〉 be two PFNs and α=0.5, then using (7) 

we have 𝑷𝟏
𝜶 = 〈(𝟎. 𝟒)𝟎.𝟓, √𝟏 − (𝟏 − 𝟎. 𝟓𝟐)𝟎.𝟓〉 = 〈𝟎. 𝟔𝟑𝟐, 𝟎. 𝟑𝟔𝟔〉 and 𝑷𝟐

𝜶 =

〈(𝟎. 𝟐)𝟎.𝟓, √𝟏 − (𝟏 − 𝟎. 𝟑𝟐)𝟎.𝟓〉 = 〈𝟎. 𝟒𝟒𝟕, 𝟎. 𝟐𝟏𝟒〉 respectively. According to Definition 

3, we have 𝒔(𝑷𝟏) = −𝟎. 𝟎𝟗, 𝒔(𝑷𝟐) = −𝟎. 𝟎𝟓, then 𝑷𝟏 ≺ 𝑷𝟐, while  𝒔(𝑷𝟏
𝜶) = 𝟎. 𝟐𝟔𝟔, 

𝒔(𝑷𝟐
𝜶) = 𝟎. 𝟏𝟓𝟑, then 𝑷𝟏

𝜶 ≻ 𝑷𝟐
𝜶. Thus, the operation (7) for PFNs is not monotone with 

respect to the ordering (9). 

Recently, Bakioglu and Atahan [1] proposed a hybrid multi-criteria decision making 

approach under PFN environment using Pythagorean fuzzy weighted averaging (PFWA), 

which is defined as follows: 

Definition 4. [1] Let  𝑷𝒊 = 〈𝝁𝑷𝒊
, 𝝂𝑷𝒊

〉 be a collection of PFNs and 𝒘 = (𝒘𝟏, … , 𝒘𝒏) be its 

weight vector, i=(1, 2,…, n) with 𝒘𝒊 ∈ [𝟎, 𝟏] and ∑ 𝒘𝒊
𝒏
𝒊=𝟏 = 𝟏, the PFWA is defined as: 

 

 𝑷𝑭𝑾𝑨(𝑷𝟏, … , 𝑷𝒏) = 〈(𝟏 − ∏ (𝟏 − 𝝁𝑷𝐢
𝟐)

𝒘𝒊𝒏
𝒊=𝟏 )

𝟏/𝟐
,   ∏ (𝝂𝑷𝐢

)
𝒘𝒊𝒏

𝒊=𝟏 〉.  (10) 

 

The desirable, monotonicity property of the aggregation operator is defined as follows:  

For any three PFNs A, B and C,  if 𝐴 ≻ 𝐵 then 𝑃𝐹𝑊𝐴(𝐴, 𝐶) ≻ 𝑃𝐹𝑊𝐴(𝐵, 𝐶).  

Remark 4. There are some unreasonable results like non-monotonicity provided by the 

operator (10) as shown below.   

Example 4. Let 𝑨 = 〈𝟎. 𝟏𝟓, 𝟎. 𝟑〉 , 𝑩 = 〈𝟎. 𝟒, 𝟎. 𝟓〉 and 𝑪 = 〈𝟎. 𝟏𝟓, 𝟎. 𝟏〉 be three PFNs.  

Since the score function 𝐬(𝑨) = −𝟎. 𝟎𝟔𝟕 and 𝐬(𝑩) = −𝟎. 𝟎𝟗, so we get 𝑩 ≺ 𝑨. With the 

weights 𝒘𝟏 = 𝒘𝟐 = 𝟎. 𝟓, we aggregate B with C and A with C using (10). Respectively, 

we get 𝐏𝐅𝐖𝐀(𝑩, 𝑪) = 〈𝟎. 𝟑𝟎𝟔, 𝟎. 𝟐𝟐𝟑〉, 𝐏𝐅𝐖𝐀(𝑨, 𝑪) = 〈𝟎. 𝟏𝟓, 𝟎. 𝟏𝟕𝟑〉. Calculating their 

score function, we get 𝒔(𝐏𝐅𝐖𝐀(𝑩, 𝑪)) = 𝟎. 𝟎𝟒𝟒, 𝒔(𝐏𝐅𝐖𝐀(𝑨, 𝑪)) = −𝟎. 𝟎𝟎𝟕, then we 

have 𝐏𝐅𝐖𝐀(𝑩, 𝑪) ≻ 𝐏𝐅𝐖𝐀(𝑨, 𝑪) showing that the operator PFWA (10) is non-monotonic 

on the PFNs. 

The another utilization of PFS to the decision making approach is generalized Pythagorean 

fuzzy weighted Bonferroni mean (GPFWBM) proposed by Zhang et al. [17] 

Definition 5. Let s, t, r >0 and 𝑃𝑖 = 〈𝜇𝑖, 𝜈𝑖〉 be a collection of PFNs with their weights 𝑤 =
(𝑤1, … , 𝑤𝑛), i=(1, 2,…, n) satisfying 𝑤𝑖 ∈ [0, 1] and ∑ 𝑤𝑖

𝑛
𝑖=1 = 1. Then the GPFWBM is 

defined in [17] as: 

𝑮𝑷𝑭𝑾𝑩𝑴𝒔,𝒕,𝒓(𝑷𝟏, … , 𝑷𝒏) =

⟨

(√𝟏 − ∏ (𝟏 − 𝝁𝒊
𝟐𝒔𝝁𝒋

𝟐𝒕𝝁𝒌
𝟐𝒓)

𝒘𝒊𝒘𝒋𝒘𝒌𝒏
𝒊,𝒋,𝒌=𝟏 )

𝟏
(𝒔+𝒕+𝒓)

,

 √(𝟏 − (𝟏 − ∏ (𝟏 − (𝟏 − 𝝂𝒊
𝟐)𝒔(𝟏 − 𝝂𝒋

𝟐)
𝒕
(𝟏 − 𝝂𝒌

𝟐)𝒓)
𝒘𝒊𝒘𝒋𝒘𝒌𝒏

𝒊,𝒋,𝒌=𝟏 ))

𝟏

(𝒔+𝒕+𝒓)

  

⟩  (11) 
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Remark 5. It is easily seen that for any three arguments 𝑃𝑖 = 〈1, 0〉 of the operator (11), the 

aggregation result will be the same equalling 〈1, 0〉 regardless of other arguments and their 

weights.   

3. The similarity measure for PFSs 

Apart from the common approach of similarity measures based  on the frequently used 

distance measure, we propose a new similarity measure on the basis of the knowledge 

measure. The knowledge measure developed by Nguyen [8] depicts knowledge amount of 

information conveyed by an IFS (sum of the membership and non-membership degrees) 

and by its inherent fuzziness, which appears as variation between the membership and non-

membership functions. Therefore, we propose a similarity measure based on the simpler 

knowledge measure of the PFSs as follows. 

Definition 6. Let 𝑃𝐹𝑆(𝑋) denotes the family of all the PFSs over the universe of discourse 

𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} and an PFS given by 𝐴 = 〈𝜇𝐴(𝑥𝑖), 𝜈𝐴(𝑥𝑖)〉. A mapping 𝐾𝑁: 𝑃𝐹𝑆(𝑋) ⟶

[0,1] is called a knowledge measure of A, if it satisfies the following properties: ∀𝑥𝑖 ∈ 𝑋,  

(A1.1) 𝐾𝑁(𝐴) = 0   iff µ𝐴(𝑥𝑖) = 𝜈𝐴(𝑥𝑖) = 0;  

(A1.2) 𝐾𝑁(𝐴) = 1   iff A is a crisp set;  

(A1.3) 𝐾𝑁(𝐴𝑐) = 𝐾𝑁(𝐴), where 𝐴𝑐 is a complement of 𝐴; 

(A1.4) 𝐾𝑁(𝐴) ≥ 𝐾𝑁(𝐵) iff µ𝐴(𝑥𝑖) ≥ µ𝐵(𝑥𝑖) and 𝜈𝐴(𝑥𝑖) ≥ 𝜈𝐵(𝑥𝑖);  

Theorem 1. For an PFS 𝐴 ∈ 𝑃𝐹𝑆(𝑋), the function 𝐾𝑁 defined by  

 𝐾𝑁(𝐴) =
1

𝑛
∑

1

21/2 {[(µ𝐴(𝑥𝑖))
2

+ (𝜈𝐴(𝑥𝑖))
2

] + (µ𝐴(𝑥𝑖) − 𝜈𝐴(𝑥𝑖))
2

}
1/2

𝑛
𝑖=1 ,  (12) 

is a knowledge measure of A. 

Proof:  

The proof of (A1.1) to (A1.2) is straightforward from Definition 6.  

(A1.3), 𝐴𝑐 = 〈𝜈𝐴(𝑥𝑖), 𝜇𝐴(𝑥𝑖)〉 and 

 𝐾𝑁(𝐴𝑐) =
1

𝑛
∑

1

21/2 {[(µ𝐴(𝑥𝑖))
2

+ (𝜈𝐴(𝑥𝑖))
2

] + (µ𝐴(𝑥𝑖) − 𝜈𝐴(𝑥𝑖))
2

}
1/2

𝑛
𝑖=1 = 𝐾𝑁(𝐴); 

(A.1.4) Given two PFSs A and B, we have 

𝐾𝑁(𝐴) ≥ 𝐾𝑁(𝐵) ⟺ (µ𝐴(𝑥𝑖) + 𝜈𝐴(𝑥𝑖))
2

≥ (µ𝐵(𝑥𝑖) + 𝜈𝐵(𝑥𝑖))
2

 and (µ𝐴(𝑥𝑖) − 𝜈𝐴(𝑥𝑖))
2

≥ (µ𝐵(𝑥𝑖) − 𝜈𝐵(𝑥𝑖))
2
 

⟺ 4µ𝐴(𝑥𝑖)𝜈𝐴(𝑥𝑖) ≥ 4µ𝐵(𝑥𝑖)𝜈𝐵(𝑥𝑖) ⟺ µ𝐴(𝑥𝑖) ≥ µ𝐵(𝑥𝑖) and 𝜈𝐴(𝑥𝑖) ≥ 𝜈𝐵(𝑥𝑖). 

This completes the proof. 

Due to such constructed knowledge measure, it cannot distinguish a PFV and its 

complement. To distinguish the significance between positive and negative information, a 

knowledge-based similarity measure is proposed as follows. 

Definition 7. Let 𝐴, 𝐵, 𝐶 ∈ 𝑃𝐹𝑆(𝑋) be PFVs with the same significance of information, i.e. 

µ𝐴(𝑥) ≥ 𝜈𝐴(𝑥), µ𝐵(𝑥) ≥ 𝜈𝐵(𝑥) and µ𝐶(𝑥) ≥ 𝜈𝐶(𝑥) or inversely, a mapping 
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𝑆𝑖𝑚𝑁: 𝑃𝐹𝑆(𝑋) ⟶ [0,1] is called a similarity measure between PFSs,----``` if it satisfies the 

following properties: ∀𝑥𝑖 ∈ 𝑋, 

(A2.1)  𝑆𝑖𝑚𝑁(𝐴, 𝐵) = 1 iff A=B, 

(A2.2)  𝑆𝑖𝑚𝑁(𝐴, 𝐵) = 0 iff 𝜋𝐴 = 1 & 𝐵 is a crisp set or 𝐴 is a crisp set & 𝜋𝐵 = 1,  

(A2.3)  𝑆𝑖𝑚𝑁(𝐴, 𝐵) = 𝑆𝑖𝑚𝑁(𝐵, 𝐴), 

(A2.4) If 𝐴 ≽ 𝐵 ≽ 𝐶 then 𝑆𝑖𝑚𝑁(𝐴, 𝐶) ≤ 𝑆𝑖𝑚𝑁(𝐴, 𝐵) & 𝑆𝑖𝑚𝑁(𝐴, 𝐶) ≤ 𝑆𝑖𝑚𝑁(𝐵, 𝐶).  

 

Theorem 2. For any 𝐴, 𝐵 ∈ 𝑃𝐹𝑆(𝑋) with the same significance of information, i.e. µ𝐴(𝑥) ≥

𝜈𝐴(𝑥) and µ𝐵(𝑥) ≥ 𝜈𝐵(𝑥) or inversely, the function defined as: 

 𝑆𝑖𝑚𝑁(A, B) = 1 − |𝐾𝑁(𝐴) − 𝐾𝑁(𝐵)|  (13) 

is a similarity measure between A and B. 

From Definition 6, it is easily seen that 0 ≤ 𝑆𝑖𝑚𝑁(A, B) ≤ 1, ∀𝑥𝑖 ∈ 𝑋.  

 

Proof:  

(A2.1) We have from Definition 7:  

𝑆𝑖𝑚𝑁(𝐴, 𝐵) = 1 ⇔ |𝐾𝑁(𝐴) − 𝐾𝑁(𝐵)| = 0 ⇔ 𝐴 = 𝐵. 

(A2.2) Having 0 ≤ 𝑆𝑁(𝐴) ≤ 1, ∀𝑥 ∈ 𝑋, we obtain:  

𝑆𝑖𝑚𝑁(𝐴, 𝐵) = 0 ⇔ 𝑆𝑁(𝐵) = 0 & 𝑆𝑁(𝐴) = 1 𝑜𝑟 𝑆𝑁(𝐵) = 1 & 𝑆𝑁(𝐴) = 0. 

Thus, 𝑆𝑖𝑚𝑁(𝐴, 𝐵) = 0 ⇔  𝐴 is a crisp set & 𝜋𝐵 = 1 or 𝜋𝐴 = 1 & 𝐵 is a crisp set. 

(A2.3) It is obvious from Definition 7. 

(A2.4) From (A1.4) for µ𝐴 ≥ 𝜈𝐴, µ𝐵 ≥ 𝜈𝐵  and µ𝐶 ≥ 𝜈𝐶  we have: 

if 𝐴 ≽ 𝐵 ≽ 𝐶  then 𝐾𝑁(𝐴) ≥ 𝐾𝑁(𝐵) ≥ 𝐾𝑁(𝐶) which implies: 

𝐾𝑁(𝐴) − 𝐾𝑁(𝐶) ≥ 𝐾𝑁(𝐴) − 𝐾𝑁(𝐵) ≥ 0 ⇒ 1 − |𝐾𝑁(𝐴) − 𝐾𝑁(𝐶)|

≤ 1 − |𝐾𝑁(𝐴) − 𝐾𝑁(𝐵)| 

⇒ 𝑆𝑖𝑚𝑁(𝐴, 𝐶) ≤ 𝑆𝑖𝑚𝑁(𝐴, 𝐵), and  

𝐾𝑁(𝐴) − 𝐾𝑁(𝐶) ≥ 𝐾𝑁(𝐵) − 𝐾𝑁(𝐶) ≥ 0 ⇒ 1 − |𝐾𝑁(𝐴) − 𝐾𝑁(𝐶)|

≤ 1 − |𝐾𝑁(𝐵) − 𝐾𝑁(𝐶)| 

⇒ 𝑆𝑖𝑚𝑁(𝐴, 𝐶) ≤ 𝑆𝑖𝑚𝑁(𝐵, 𝐶). 

This completes the proof. 

4. Numerical examples 

In this section, the performance of the proposed knowledge measure will be examined 

based on some numerical examples.  

Example 5 (Continuing Ex. 1). Let 𝑃1 = 〈
√5

3
, 2/3〉 and 𝑃2 = 〈

2

3
, √3/3〉 be two PFNs, 

according to (12), we have 𝐾𝑁(𝑃1) = 0.74 and 𝐾𝑁(𝑃2)=0.67, then 𝑃1 ≻ 𝑃2, whereas  the 

relation (9) cannot distinguish these two. 
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Example 6 (Continuing Ex. 2). Let 𝑃1 = 〈0.5, 0.4〉, 𝑃2 = 〈0.3, 0.2〉 be two PFNs and 

α=0.5, then using (6) we have 𝛼𝑃1 = 〈√1 − (1 − 0.52)0.5, (0.4)0.5〉 = 〈0.366, 0.632〉 and 

𝛼𝑃2 = 〈√1 − (1 − 0.32)0.5, (0.2)0.5〉 = 〈0.214, 0.447〉 respectively. According to (12) we 

have 𝐾𝑁(𝑃1) = 0.5, 𝐾𝑁(𝑃2) = 0.3, then 𝑃1 ≻ 𝑃2, whereas  𝐾𝑁(𝛼𝑃1) = 0.63, 𝐾𝑁(𝛼𝑃2) =

0.45, then 𝛼𝑃1 ≻ 𝛼𝑃2. Thus in this case, the operation (6) for PFNs is monotone with 

respect to the proposed knowledge measure. 

Example 7 (Continuing Ex. 3). Let 𝑷𝟏 = 〈𝟎. 𝟓, 𝟎. 𝟒〉, 𝑷𝟐 = 〈𝟎. 𝟑, 𝟎. 𝟐〉 be two PFNs 

and α=0.5, then using (7) we have 𝑷𝟏
𝜶 = 〈(𝟎. 𝟓)𝟎.𝟓, √𝟏 − (𝟏 − 𝟎. 𝟒𝟐)𝟎.𝟓〉 =

〈𝟎. 𝟕𝟎𝟕, 𝟎. 𝟐𝟖𝟗〉 and 𝑷𝟐
𝜶 = 〈(𝟎. 𝟐)𝟎.𝟓, √𝟏 − (𝟏 − 𝟎. 𝟑𝟐)𝟎.𝟓〉 = 〈𝟎. 𝟓𝟒𝟕, 𝟎. 𝟏𝟒𝟐〉 

respectively. According to (12), we have 𝑲𝑵(𝑷𝟏) = 𝟎. 𝟓, 𝑲𝑵(𝑷𝟐) = 𝟎. 𝟑, then 𝑷𝟏 ≻ 𝑷𝟐, 

while  𝑲𝑵(𝜶𝑷𝟏) = 𝟎. 𝟕𝟏, 𝑲𝑵(𝜶𝑷𝟐) = 𝟎. 𝟓𝟒, then 𝜶𝑷𝟏 ≻ 𝜶𝑷𝟐. Thus in this case, the 

operation (7) for PFNs is monotone with respect to the proposed knowledge measure. 

5. Application 

In this section, the proposed similarity measure is employed for the fault diagnosis of 

steam turbine generator unit under Pythagorean fuzzy environment. The vibration of the 

steam turbine generator unit suffers the influence of varying factors, such as mechanical 

load, vacuum degree, fluctuation of network load, the temperature of lubricant oil and 

defects of mechanical structure. Interaction effects of these factors result in the vibration of 

the generator unit. Ten fault types in rotating machines are established as failure patterns, 

i.e. 𝑃1- unbalance, 𝑃2- pneumatic force couple, 𝑃3- offset center, 𝑃4- oil-membrane 

oscillation, 𝑃5- radial impact friction of rotor, 𝑃6- symbiosis looseness, 𝑃7- damage of 

antithrust bearing, 𝑃8- surge, 𝑃9- looseness of bearing block and 𝑃10- non-uniform bearing 

stiffness. The knowledge of fault types and symptoms in the vibration frequencies of the 

turbine is adopted from [12] by transforming the vague values into the PFVs. The vibration 

frequency of turbine is divided into 9 different frequency ranges, in which the failure 

patterns are represented by PFVs, as shown in Table 1.  

Table 1 

The knowledge of system fault pattern [12] 

 Frequency range (f- operating frequency) 

Fault patterns 
0.01-

0.39f 

0.40-

0.49f 
0.50f 

0.51-

0.99f 
f 2f 3-5f 

Odd 

times 

of f 

High 

freq 

>5f 

P1- Unbalance 〈0,1〉 〈0,1〉 〈0,1〉 〈0,1〉 
〈0.85,

0〉 

〈0.04, 

0.94〉 

〈0.04, 

0.93〉 
〈0,1〉 〈0,1〉 

P2- Pneumatic 

force couple 
〈0,1〉 

〈0.28, 

0.69〉 

〈0.09, 

0.88〉 

〈0.55, 

0.3〉 
〈0,1〉 〈0,1〉 〈0,1〉 〈0,1〉 

〈0.08, 

0.83〉 
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P3- Offset center 〈0,1〉 〈0,1〉 〈0,1〉 〈0,1〉 
〈0.3, 

0.42〉 

〈0.4, 

0.58〉 

〈0.08, 

0.83〉 
〈0,1〉 〈0,1〉 

P4- Oil-membrane 

oscillation 

〈0.09, 

0.11〉 

〈0.78, 

0.18〉 
〈0,1〉 

〈0.08, 

0.89〉 
〈0,1〉 〈0,1〉 〈0,1〉 〈0,1〉 〈0,1〉 

P5- Radial impact 

friction of rotor 

〈0.09, 

0.88〉 

〈0.09, 

0.11〉 

〈0.08, 

0.88〉 

〈0.09, 

0.88〉 

〈0.18, 

0.79〉 

〈0.08, 

0.83〉 

〈0.08, 

0.83〉 

〈0.08, 

0.88〉 

〈0.08, 

0.88〉 

P6- Symbiosis 

looseness 
〈0,1〉 〈0,1〉 〈0,1〉 〈0,1〉 

〈0.18, 

0.78〉 

〈0.12, 

0.83〉 

〈0.37 

0.55〉 
〈0,1〉 

〈0.22, 

0.72〉 

P7- Damage of 

antithrust bearing 
〈0,1〉 〈0,1〉 

〈0.08, 

0.88〉 

〈0.86, 

0.07〉 
〈0,1〉 〈0,1〉 〈0,1〉 〈0,1〉 〈0,1〉 

P8- Surge 〈0,1〉 
〈0.27, 

0.68〉 

〈0.08, 

0.88〉 

〈0.54, 

0.38〉 
〈0,1〉 〈0,1〉 〈0,1〉 〈0,1〉 〈0,1〉 

P9- Looseness of 

bearing block 

〈0.85, 

0.07〉 
〈0,1〉 〈0,1〉 〈0,1〉 〈0,1〉 〈0,1〉 〈0,1〉 

〈0.08, 

0.88〉 
〈0,1〉 

P10- Non-uniform 

bearing stiffness 
〈0,1〉 〈0,1〉 〈0,1〉 〈0,1〉 〈0,1〉 

〈0.77, 

0.17〉 

〈0.19, 

0.77〉 
〈0,1〉 〈0,1〉 

 

Suppose that there are two fault-testing samples A and B expressed in PFVs as shown 

in Table 2.  

 

Table 2 

The characteristic of the fault-testing samples [12] 

Frequency range (f- operating frequency) 

Fault-

testing 

samples 

0.01- 

0.39f 

0.40- 

0.49f 
0.50f 

0.51- 

0.99f 
F 2f 3-5f 

Odd 

times of 

f 

High 

freq 

>5f 

A 〈0,1〉 〈0,1〉 〈0.1, 0.9〉 
〈0.9, 

0.1〉 
〈0,1〉 〈0,1〉 〈0,1〉 〈0,1〉 〈0,1〉 

B 
〈0.39, 

0.56〉 

〈0.07, 

0.88〉 
〈0,0.95〉 

〈0.06, 

0.89〉 
〈0,0.95〉 

〈0.13, 

0.82〉 
〈0,0.95〉 〈0,0.95〉 

〈0.35, 

0.60〉 

 

Our goal in the fault diagnosis analysis is to classify the fault-testing samples into one 

of the known fault patterns 𝑃𝑗 , (𝑗 = 1,2, . . ,10), adopting the proposed similarity measure 

SimN (13). The calculation results of similarity measures between the fault-testing samples 

and the known fault patterns are summarized in rows of Table 3. 
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Table 3 

Results of similarity measures between the fault-testing samples and the known 

patterns 

 Similarity measures  

Fault-

testing 

samples 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

A 0.997 0.893 0.877 0.967 0.859 0.878 0.996 0.912 0.995 0.965 

B 0.846 0.949 0.966 0.876 0.984 0.964 0.847 0.931 0.848 0.877 

 

According to the principle of maximum similarity measure, we can decide that the 

fault-testing sample A is most similar to the known fault pattern 𝑃7- damage of antithrust 

bearing, consistent with the results obtained in [12]12. In the same manner, we derive that 

the fault-testing sample B is most similar to the known fault pattern 𝑃5- radial impact 

friction of rotor, which is also consistent with the results obtained in [12].  

6. Conclusions 

The paper discusses some limitations of the existing methods for PFSs. Also, a novel 

similarity measure based on knowledge measure for PFSs has been proposed, which 

incorporates the knowledge conveyed by PFSs and significance related to positive and 

negative information  to distinguish their meanings. Thanks to that, it can overcome the 

drawbacks of the existing methods. The superiority of the proposed method in dealing with 

uncertain information has been shown in numerical examples. The effectiveness and 

applicability of the proposed method have been demonstrated in applications of fault 

diagnosis of the turbine generator. The results obtained by the proposed methods were 

consistent with that of the existing methods, which though have shown to be failing in some 

other cases. The limitation of the paper is the lack of experimental verification by own real-

life applications or statistical test. Thus, future work will be focused on these issues. 
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