PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biodiesel Production of Palm Oil Mill Effluent by Using Hydrotalcite Catalyst

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biodiesel is currently preferred for consumption and has been widely used as a substitute for diesel. This study aimed to determine the effect of various methanol-to-oil ratios in the esterification process and also the effect of hydrotalcite catalyst weight on the transesterification product. The catalyst was characterized with SEM, XRD, FTIR, and TG-DTG-DTA. The esterification process was operated at various oil-to-methanol ratios, i.e., 1:12–1:36 and the transesterification was performed using several catalyst weights, 0.5%–2.5%. The results showed that the optimum conditions of esterification were at the 1:30 molar ratio of oil-to-methanol, which decreased the amount of acid number by 95.75%, while the optimum condition of transesterification was at 1.5% catalyst weight. The characteristics of biodiesel using 0.5–2% hydrotalcite catalyst (acid number, total glycerol, free glycerol, ester levels, viscosity, density, oxidation stability) have met the Indonesian biodiesel standard of SNI-04-7182-2012.
Słowa kluczowe
Rocznik
Strony
172--181
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl. Masjid Al Gazali, Bukit Lama, Kec. Ilir Bar. I, Kota Palembang, Sumatera Selatan 30128, Indonesia
autor
  • Chemistry Department, Mathematics and Natural Sciences Faculty, Sebelas Maret University, Solo, Jl. Ir. Sutami No. 36, Kentingan, Kec. Jebres, Kota Surakarta, Jawa Tengah 57126, Indonesia
autor
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl. Masjid Al Gazali, Bukit Lama, Kec. Ilir Bar. I, Kota Palembang, Sumatera Selatan 30128, Indonesia
autor
  • Chemistry Department, Mathematics and Natural Sciences Faculty, Universitas Sriwijaya, Jl. Masjid Al Gazali, Bukit Lama, Kec. Ilir Bar. I, Kota Palembang, Sumatera Selatan 30128, Indonesia
autor
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl. Masjid Al Gazali, Bukit Lama, Kec. Ilir Bar. I, Kota Palembang, Sumatera Selatan 30128, Indonesia
  • Chemical Engineering Department, Faculty of Engineering, Bandung Institute of Technology, Jl. Ganesa No.10, Lb. Siliwangi, Kecamatan Coblong, Kota Bandung, Jawa Barat 40132, Indonesia
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl. Masjid Al Gazali, Bukit Lama, Kec. Ilir Bar. I, Kota Palembang, Sumatera Selatan 30128, Indonesia
  • Electrical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl. Masjid Al Gazali, Bukit Lama, Kec. Ilir Bar. I, Kota Palembang, Sumatera Selatan 30128, Indonesia
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl. Masjid Al Gazali, Bukit Lama, Kec. Ilir Bar. I, Kota Palembang, Sumatera Selatan 30128, Indonesia
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl. Masjid Al Gazali, Bukit Lama, Kec. Ilir Bar. I, Kota Palembang, Sumatera Selatan 30128, Indonesia
Bibliografia
  • 1. Barbosa G.V., Zaghete M.A., Amoresi R.A.C., da Silva M.S., Cavalheiro A.A., de Lara da Silva R.C. 2017. Structural Analysis of Magnesium-Aluminium Hydrotalcites Modified with Iron III Obtained by Hydroxide Precipitation Method. Materials Sciences and Applications, 8(11), 784–797. https://doi.org/10.4236/msa.2017.811057
  • 2. Botella L., Bimbela F., Martín L., Arauzo J., Sánchez J.L. 2014. Oxidation stability of biodiesel fuels and blends using the Rancimat and PetroOXY methods. Effect of 4-allyl-2,6-dimethoxyphenol and catechol as biodiesel additives on oxidation stability. Frontiers in Chemistry, 2(JUL), 1–9. https://doi.org/10.3389/fchem.2014.00043
  • 3. Dahdah E., Estephane J., Taleb Y., El Khoury B., El Nakat J., Aouad S. 2021. The role of rehydration in enhancing the basic properties of Mg–Al hydrotalcites for biodiesel production. Sustainable Chemistry and Pharmacy, 22(June), 100487. https://doi.org/10.1016/j.scp.2021.100487
  • 4. Flitsch S., Neu P.M., Schober S., Kienzl N., Ullmann J., Mittelbach M. 2014. Quantitation of aging products formed in biodiesel during the Rancimat accelerated oxidation test. Energy and Fuels, 28(9), 5849–5856. https://doi.org/10.1021/ef501118r
  • 5. Gao L., Teng G., Xiao G., Wei R. 2010. Biodiesel from palm oil via loading KF/Ca-Al hydrotalcite catalyst. Biomass and Bioenergy, 34(9), 1283–1288. https://doi.org/10.1016/j.biombioe.2010.03.023
  • 6. Handayani S., Kusumawardhani C., Budiasih K.S. 2009. Sintesis dan Karakterisasi Hidrotalsit Mg/Al dengan Metode Kopresipitasi Hidrotermal untuk Reaksi Kondensasi Aldol, 27–39.
  • 7. Harju H., Pipitone G., Lefferts L. 2020. Influence of the Catalyst Particle Size on the Aqueous Phase Reforming of n-Butanol Over Rh/ZrO2. Frontiers in Chemistry, 8(January), 1–13. https://doi.org/10.3389/fchem.2020.00017
  • 8. Kolakaningrum C.F., Agustina T.E., Hadiah F. 2021. Biodiesel Production using Oil Extracted from Cooling Pond Wastewater with Esterification of Sulfonated Carbon Catalyst and Transesterification of Na2CO3 Catalyst. Journal of Ecological Engineering, 22(10), 51–62. https://doi.org/10.12911/22998993/142186
  • 9. Lapuerta M., Rodríguez-Fernández J., Ramos A., Álvarez B. 2012. Effect of the test temperature and anti-oxidant addition on the oxidation stability of commercial biodiesel fuels. Fuel, 93, 391–396. https://doi.org/10.1016/j.fuel.2011.09.011
  • 10. Liu Y., Tu Q., Knothe G., Lu M. 2017. Direct transesterification of spent coffee grounds for biodiesel production. Fuel, 199, 157–161. https://doi.org/10.1016/j.fuel.2017.02.094
  • 11. Ma Y., Wang Q., Zheng L., Gao Z., Wang Q., Ma Y. 2016. Mixed methanol/ethanol on transesterification of waste cooking oil using Mg/Al hydrotalcite catalyst. Energy, 107, 523–531. https://doi.org/10.1016/j.energy.2016.04.066
  • 12. Navarro R.M., Guil-Lopez R., Fierro J.L.G., Mota N., Jiménez S., Pizarro P., Coronado J.M., Serrano D.P. 2018. Catalytic fast pyrolysis of biomass over Mg-Al mixed oxides derived from hydrotalcite-like precursors: Influence of Mg/Al ratio. Journal of Analytical and Applied Pyrolysis, 134(June), 362–370. https://doi.org/10.1016/j.jaap.2018.07.001
  • 13. Ogawa M., Kaiho H. 2002. Homogeneous precipitation of uniform hydrotalcite particles. Langmuir, 18(11), 4240–4242. https://doi.org/10.1021/la0117045
  • 14. Oliveira M.B., Pratas M.J., Queimada A.J., Coutinho J.A.P. 2012. Another look at the water solubility in biodiesels: Further experimental measurements and prediction with the CPA EoS. Fuel, 97, 843–847. https://doi.org/10.1016/j.fuel.2012.03.022
  • 15. Olszówka J.E., Karcz R., Michalik-Zym A., Napruszewska B.D., Bielańska E., KryściakCzerwenka J., Socha R.P., Nattich-Rak M., Krzan M., Klimek A., Bahranowski K., Serwicka E.M. 2019. Effect of grinding on the physico-chemical properties of Mg-Al hydrotalcite and its performance as a catalyst for Baeyer-Villiger oxidation of cyclohexanone. Catalysis Today, November 2017, 147–153. https://doi.org/10.1016/j.cattod.2018.05.035
  • 16. Pahlevi M.R., Nurhayati, Anita S. 2015. Variasi Berat Katalis Dan Suhu Rekasi Transesterifikasi Crude Palm Oil Menggunakan Katalis Cangkang Kerang Darah Kalsinasi 800 oC. Jom Fmipa, 2(1), 186–191. https://www.neliti.com/id/publications/185091/variasi-berat-katalis-dan-suhu-reaksi-transesterifikasi-crude-palm-oil-menggunak
  • 17. Pathak M., Kalita N., Baruah D., Bhowmik R. 2019. Production of Biodiesel from Waste Cooking Oil. 5th International Conference on Science Technology Engineering and Mathematics, ICONSTEM 2019, 5(May), 270–274. https://doi.org/10.1109/ICONSTEM.2019.8918857
  • 18. Prawoko E. 2009. Pengaruh tahapan proses esterifikasi, transesterifikasi dan netralisasi terhadap karakteristik biodiesel dari biji kesambi (Schleichera oleisa L.), 1–66.
  • 19. Putra I.M.W. 2021. Production of Biodiesel from Waste Cooking Oil by Transesterification Process using Heterogeneous Catalyst. Nigerian Journal of Environmental Sciences and Technology, 5(2), 501–510. https://doi.org/10.36263/nijest.2021.02.0308
  • 20. Rashid U., Anwar F., Arif M. 2009. Optimization of base catalytic methanolysis of sunflower (helianthus annuus) seed oil for biodiesel production by using response surface methodology. Industrial and Engineering Chemistry Research, 48(4), 1719–1726. https://doi.org/10.1021/ie801136h
  • 21. Riniati. 2013. Perbandingan Jumlah CaO dari Batu Kapur dengan Cangkang Kerang sebagai Katalis Heterogen pada Pembuatan Biodiesel. Jurnal Fluida, 9, 31.
  • 22. Rodriguez-Chiang L.M., Llorca J., Dahl O.P. 2016. Effect of Fe-Zn-Mg-Al hydrotalcites on the methane potential of synthetic sulfate-containing wastewater. Journal of Water Process Engineering, 10, 120–127. https://doi.org/10.1016/j.jwpe.2016.03.001
  • 23. Santosa S.J., Astuti D.P. 2021. Reusable high performance of calcined Mg/Al hydrotalcite for the removal of Navy Blue and Yellow F3G dyes. Chinese Journal of Chemical Engineering, 38, 247–254. https://doi.org/10.1016/j.cjche.2020.08.038
  • 24. Senthilkumar C., Krishnaraj C., Sivakumar P., Sircar A. 2019. Statistical optimization and kinetic study on biodiesel production from a potential nonedible bio-oil of wild radish. Chemical Engineering Communications, 206(7), 909–918. https://doi.org/10.1080/00986445.2018.1538973
  • 25. Silva V. da M.A., Lagnier Gil Ferreira B., da Costa Marques L.G., Lamare Soares Murta A., Vasconcelos de Freitas M.A. 2017. Comparative study of NOx emissions of biodiesel-diesel blends from soybean, palm and waste frying oils using methyl and ethyl transesterification routes. Fuel, 194, 144–156. https://doi.org/10.1016/j.fuel.2016.12.084
  • 26. Velázquez-Herrera F.D., Fetter G., Rosato V., Pereyra A.M., Basaldella E.I. 2018. Effect of structure, morphology and chemical composition of Zn-Al, Mg/Zn-Al and Cu/Zn-Al hydrotalcites on their antifungal activity against A. niger. Journal of Environmental Chemical Engineering, 6(2), 3376–3383. https://doi.org/10.1016/j.jece.2018.04.069
  • 27. Vreysen S., Maes A. 2008. Adsorption mechanism of humic and fulvic acid onto Mg/Al layered double hydroxides. Applied Clay Science, 38(3–4), 237–249. https://doi.org/10.1016/j.clay.2007.02.010
  • 28. Yang Z., Hollebone B.P., Wang Z., Yang C., Landriault M. 2013. Factors affecting oxidation stability of commercially available biodiesel products. Fuel Processing Technology, 106, 366–375. https://doi.org/10.1016/j.fuproc.2012.09.001
  • 29. Zeng H.Y., Xu S., Liao M.C., Zhang Z.Q., Zhao C. 2014. Activation of reconstructed Mg/Al hydrotalcites in the transesterification of microalgae oil. Applied Clay Science, 91–92, 16–24. https://doi.org/10.1016/j.clay.2014.02.003
  • 30. Zuhri R.R.S. 2018. Pembuatan Biodiesel Berbasis CPO (Crude Palm Oil) Menggunakan K-Silika Sebagai Katalis Heterogen. September.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92a70cc9-fdd2-46bc-95ef-9baafe364824
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.