Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Parts with interior voids created by the LPBF process are known to have the potential to cause fracture when subjected to mechanical loading. In this research, the key process parameters such as laser thickness (LT), scanning speed (SS), and laser power (LP) were taken into consideration to avoid the void formations which was the major reason for affecting the structural integrity. So, void formations (V), ultimate tensile strength (UTS) and reduced modulus (RM) were considered as the response parameters in this study. The entropy-associated weighted aggregated sum product assessment (WASPAS) approach was implemented to examine the favorable conditions which substantiated that the LT is the most influential parameter in nucleation of voids. The verification experiments prove that the void formation was reduced by 98.6% and the UTS and RM were enhanced by 52.17 and 31.7%.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
art. no. e171, 2024
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
- Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 10608, Taiwan
autor
- School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China
autor
- Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 10608, Taiwan
Bibliografia
- 1. Masiagutova E, Cabanettes F, Sova A, Cici M, Bidron G, BertrandP. Side surface topography generation during laser powder bed fusion of AlSi10Mg. Addit Manuf. 2021;47: 102230. https://doi.org/10.1016/j.addma.2021.102230.
- 2. Fang JX, Dong SY, Li SB, Wang YJ, Xu BS, Li J, Liu B, Jiang YL. Direct laser deposition as repair technology for a low transformation temperature alloy: microstructure, residual stress, and properties. Mater Sci Eng A. 2019;748:119–27. https://doi.org/10.1016/j.msea.2019.01.072.
- 3. Jiang YL, Fang JX, Ma GZ, Tian HL, Zhang DB, Cao Y. Microstructure and properties of an as-deposited and post treated high strength carbide-free bainite steel fabricated via laser powder deposition. Mater Sci Eng A. 2021. https://doi.org/ 10.1016/j.msea.2021.141791.
- 4. Qu S, Ding J, Fu J, Fu M, Zhang B, Song X. High-precision laser powder bed fusion processing of pure copper. Addit Manuf. 2021;48: 102417. https://doi.org/10.1016/j.addma.2021.102417.
- 5. Jiang XJ, Bao SJ, Zhang LW, Zhang XY, Jiao LS, Qi HB, Wang F. Effect of Zr on microstructure and properties of TC4 alloy fabricated by laser additive manufacturing. J Mater Res Technol. 2023;24:8782–92. https://doi.org/10.1016/j.jmrt.2023.05.137.
- 6. Gullane A, Murray JW, Hyde CJ, Sankare S, Evirgen A, Clare AT. On the use of multiple layer thicknesses within laser powder bed fusion and the effect on mechanical properties. Mater Des. 2021;212:110256. https://doi.org/10.1016/j.matdes.2021.110256.
- 7. Zhang L, Zhu H, Zhang S, Wang G, Zeng X. Fabricating high dimensional accuracy LPBFed Ti6Al4V part by using bi-parameter method. Opt Laser Technol. 2019;117:79–86. https://doi.org/10.1016/j.optlastec.2019.04.009.
- 8. Cao L, Li J, Hu J, Liu H, Wu Y, Zhou Q. Optimization of surface roughness and dimensional accuracy in LPBF additive manufacturing. Opt Laser Technol. 2021;142:107246. https://doi.org/10.1016/j.optlastec.2021.107246.
- 9. Hojjatzadeh SMH, Parab ND, Guo Q, Qu M, Xiong L, Zhao C, Escano LI, Fezzaa K, Everhart W, Sun T, Chen L. Direct observation of pore formation mechanisms during LPBF additive manufacturing process and high energy density laser welding. Int J Mach Tools Manuf. 2020;153:103555. https://doi.org/10.1016/j.ijmachtools.2020.103555.
- 10. Nayak SK, Mishra SK, Paul CP, Jinoop AN, Bindra KS. Effect of energy density on laser powder bed fusion built single tracks and thin wall structures with 100 μm preplaced powder layer thickness. Opt Laser Technol. 2020;125:106016. https://doi.org/10.1016/j.optlastec.2019.106016.
- 11. Zhao L, Santos Macías JG, Ding L, Idrissi H, Simar A. Damage mechanisms in selective laser melted AlSi10Mg under asbuilt and different post-treatment conditions. Mater Sci Eng A.2019;764:138210.
- 12. Shamsdini SAR, Shakerin S, Hadadzadeh A, Amirkhiz BS, Mohammadi M. A trade-off between powder layer thickness and mechanical properties in additively manufactured maraging steels. Mater Sci Eng A. 2020;776: 139041. https://doi.org/10.1016/j.msea.2020.139041.
- 13. Liu M, Wei K, Zeng X. High power laser powder bed fusion of AlSi10Mg alloy: effect of layer thickness on defect, microstructure and mechanical property. Mater Sci Eng A. 2022;842: 143107.https://doi.org/10.1016/j.msea.2022.143107.
- 14. Hyer HC, Petrie CM. Effect of powder layer thickness on the microstructural development of additively manufactured SS316. J Manuf Process. 2022;76:666–74. https://doi.org/10.1016/j.jmapro.2022.02.047.
- 15. Sufiiarov VS, Popovich AA, Borisov EV, Polozov IA, Masaylo DV, Orlov AV. The effect of layer thickness at selective laser melting. Procedia Eng. 2017;174:126–34. https://doi.org/10.1016/j.proeng.2017.01.179.
- 16. Xu X, Hao Y, Dong R, Hou H, Zhao Y. Effect of undercooling on microstructure evolution of Cu based alloys. J Alloys Compd. 2023;935: 167998. https://doi.org/10.1016/j.jallcom.2022.167998.
- 17. Jeyaprakash N, Yang CH, Kumar MS. Influence of coherent intermetallic nano-precipitates on the nano-level mechanical and tribological properties of the laser-powder bed fused scalm alloy.Mater Charact. 2022;193: 112269. https://doi.org/10.1016/j.matchar.2022.112269.
- 18. Nayak SK, Mishra SK, Jinoop AN, Paul CP, Bindra KS. L experimental studies on laser additive manufacturing of inconel-625structures using powder bed fusion at 100 μM layer thickness. J Mater Eng Perform. 2020;29:7636–47. https://doi.org/10.1007/s11665-020-05215-9.
- 19. Badrossamay M, Rezaei A, Foroozmehr E, Maleki A, Foroozmehr A. Effects of increasing powder layer thickness on the microstructure, mechanical properties, and failure mechanism of IN718 superalloy fabricated by laser powder bed fusion. Int J Adv Manuf Technol. 2022;118:1703–17. https://doi.org/10.1007/s00170-021-07719-7.
- 20. Ma M, Wang Z, Gao M, Zeng X. Layer thickness dependence of performance in high-power selective laser melting of 1Cr18Ni9Ti stainless steel. J Mater Process Technol. 2015;215:142–50. https://doi.org/10.1016/j.jmatprotec.2014.07.034.
- 21. Jeyaprakash N, Kumar MS, Yang C. Enhanced nano-level mechanical responses on additively manufactured Cu-Cr-Zr copper alloy containing Cu2O nano precipitates. J Alloys Compd. 2023;930: 167425. https://doi.org/10.1016/j.jallcom.2022.167425.
- 22. Gusarov AV, Yadroitsev I, Bertrand P, Smurov I. Heat transfer modelling and stability analysis of selective laser melting. Appl Surf Sci. 2007;254:975–9. https://doi.org/10.1016/j.apsusc.2007.08.074.
- 23. Wang S, Liu Y, Shi W, Qi B, Yang J, Zhang F, Han D, Ma Y. Research on high layer thickness fabricated of 316L by selective laser melting. Materials (Basel). 2017. https://doi.org/10.3390/ma10091055.
- 24. Jeyaprakash N, Saravana Kumar M, Yang CH, Cheng Y, Radhika N, Sivasankaran S. Effect of microstructural evolution during melt pool formation on nanomechanical properties in LPBF basedSS316L parts. J Alloys Compd. 2024. https://doi.org/10.1016/j.jallcom.2023.172745.
- 25. Jeyaprakash N, Kumar MS, Yang C, Cheng Y, Sivasankaran S, Radhika N. Materials characterization effect of martensitic phase formation on the nano-mechanical attributes during the electron beam melting process of Ti-6Al-4V. Mater Charact. 2024;207:113592. https://doi.org/10.1016/j.matchar.2023.113592.
- 26. Xie J, Zhou Y, Zhou C, Li X, Chen Y. Microstructure and mechanical properties of Mg–Li alloys fabricated by wire arc additive manufacturing. J Mater Res Technol. 2024;29:3487–93. https://doi.org/10.1016/j.jmrt.2024.02.094.
- 27. Hu JC, Yang K, Wang QY, Zhao QC, Jiang YH, Liu YJ. Ultra-long life fatigue behavior of a high-entropy alloy. Int J Fatigue.2024;178: 108013. https:// doi. org/ 10. 1016/j. ijfat igue. 2023.108013.
- 28. Gao Q, Ding Z, Liao WH. Effective elastic properties of irregular auxetic structures. Compos Struct. 2022;287: 115269. https://doi.org/10.1016/j.compstruct.2022.115269.
- 29. Tian X, Zhao Y, Gu T, Guo Y, Xu F, Hou H. Cooperative effect of strength and ductility processed by thermomechanical treatment for Cu–Al–Ni alloy. Mater Sci Eng A. 2022;849: 143485. https://doi.org/10.1016/j.msea.2022.143485.
- 30. Wu Y, Chen J, Zhang L, Ji J, Wang Q, Zhang S. Effect of boron on the structural stability, mechanical properties, and electronic structures of γ′-Ni3Al in TLP joints of nickel-based single-crystalalloys. Mater Today Commun. 2022;31: 103375. https://doi.org/10.1016/j.mtcomm.2022.103375.
- 31. Cao L, Guan W. Simulation and analysis of LPBF multi-layer single-track forming process under different particle size distributions. Int J Adv Manuf Technol. 2021;114:2141–57. https://doi.org/10.1007/s00170-021-06987-7.
- 32. Vasinonta A, Beuth J (2000) Process maps for controlling residual stress and melt pool size in laser-based sff processes. Proc Solid Free Fabr Symp Solid Free Fabr Symp 200–208.
- 33. Levkulich NC, Semiatin SL, Gockel JE, Middendorf JR, De Wald AT, Klingbeil NW. The effect of process parameters on residual stress evolution and distortion in the laser powder bed fusion of Ti-6Al-4V. Addit Manuf. 2019;28:475–84. https:// doi. org/ 10.1016/j.addma.2019.05.015.
- 34. Murugesan SK, Natarajan J, Yang CH, Vijayananth K. A synergistic impact of LPBF process parameters on attaining a defect-free Cu-Cr-Zr alloy parts: an analytical and experimental study. Int J Adv Manuf Technol. 2023;128:3507–29. https://doi.org/10.1007/s00170-023-12179-2.
- 35. Prabu G, Jeyaprakash N, Yang CH, Alnaser IA. Investigation on deformation of nano-twins of LPBF produced Cu alloy through triboindenter. Tribol Int. 2024;191: 109117. https://doi.org/10.1016/j.triboint.2023.109117.
- 36. Li YT, Jiang X, Wang XT, Leng YX. Integration of hardness and toughness in (CuNiTiNbCr)Nx high entropy films through nitrogen-induced nanocomposite structure. Scr Mater. 2024. https://doi.org/10.1016/j.scriptamat.2023.115763.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92a1e913-03d5-4f53-aecd-ed25494acbde
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.