PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Resistance spot welding of AISI-316L SS and 2205 DSS for predicting parametric influences on weld strength – Experimental and FEM approach

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study reports the effects of RSW process parameters like heating cycle, welding current and electrode tip diameter on the tensile shear strength and nugget size of dissimilar metal welding of 2205 duplex stainless steel (DSS) and AISI-316L stainless steel sheets. Tensile shear tests were conducted to access the tensile shear strength and associated physical variations of the nugget formed. Finite element (FE) simulation of the tensile–shear test was performed using ABAQUS explicit FE software. The finite element results were compared with experimental results through the aid of graphical representation by com-paring the obtained stress–strain values for validation. The resistance spot welds are subjected to Vickers microhardness test and identified that hardness of HAZ is less for AISI-316L and high in DSS-2205 as compared to respective base metal, moreover heteroge- neous hardness values obtained in the weld metal zone (WMZ) exhibits higher hardness in ASS-316L and low hardness in DSS-2205 side as compared with base metal. Furthermore, SEM fractography indicates that the failure of tensile shear spot welded specimen occurs in the ductile mode of fracture.
Rocznik
Strony
1029--1042
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, PSNA College of Engineering & Technology, Dindigul 624622, Tamil Nadu, India
  • Department of Mechanical Engineering, College of Engineering Guindy, Anna University, Chennai 600025, Tamil Nadu, India
  • Department of Automobile Engineering, RVS School of Engineering & Technology, Dindigul 624005, Tamil Nadu, India
Bibliografia
  • [1] N.T. Williams, J.D. Parker, Review of resistance spot welding of steel sheets. Part 1 Modelling and control of weld nugget formation, Int. Mater. Rev. 49 (2) (2004) 45–75.
  • [2] S. Chen, T. Sun, X. Jiang, J. Qi, R. Zeng, Online monitoring and evaluation of the weld quality of resistance spot welded titanium alloy, J. Manuf. Process. 23 (2016) 183–191.
  • [3] M. Vural, A. Akkus, On the resistance spot weldability of galvanized interstitial free steel sheets with austenitic stainless steel sheets, J. Mater. Process. Technol. 153–154 (2004) 1–6.
  • [4] A. Saha Podder, A. Bhanja, Applications of stainless steel in automobile industry, Adv. Mater. Res. 794 (2013) 731–740.
  • [5] V. Zohoori-Shoar, A. Eslami, F. Karimzadeh, M. Abbasi- Baharanchi, Resistance spot welding of ultrafine grained/ nanostructured Al 6061 alloy produced by cryorolling process and evaluation of weldment properties, J. Manuf. Process. 26 (2017) 84–93.
  • [6] C.H. Muralimohan, S. Haribabu, Y.H. Reddy, V. Muthupandi, K. Sivaprasad, Evaluation of microstructures and mechanical properties of dissimilar materials by friction welding, Procedia Mater. Sci. 5 (2014) 1107–1113.
  • [7] D. Kianersi, A. Mostafaei, A.A. Amadeh, Resistance spot welding joints of AISI 316L austenitic stainless steel sheets: phase transformations, mechanical properties and microstructure characterizations, Mater. Des. 61 (2014) 251–263.
  • [8] J. Verma, R.V. Taiwade, Effect of welding processes and conditions on the microstructure, mechanical properties and corrosion resistance of duplex stainless steel weldments—a review, J. Manuf. Process. 25 (2017) 134–152.
  • [9] D. Özyürek, An effect of weld current and weld atmosphere on the resistance spot weldability of 304L austenitic stainless steel, Mater. Des. 29 (3) (2008) 597–603.
  • [10] S.M. Darwish, Weldbonding strengthens and balances the stresses in spot-welded dissimilar thickness joints, J. Mater. Process. Technol. 134 (3) (2003) 352–362.
  • [11] M. Palmonella, M.I. Friswell, J.E. Mottershead, A.W. Lees, Finite element models of spot welds in structural dynamics: review and updating, Comput. Struct. 83 (8) (2005) 648–661.
  • [12] Y.J. Chao, Ultimate strength and failure mechanism of resistance spot weld subjected to tensile, shear, or combined tensile/shear loads, J. Eng. Mater. Technol. 125 (2) (2003) 125–132.
  • [13] M. Pouranvari, S.P.H. Marashi, Critical review of automotive steels spot welding: process, structure and properties, Sci. Technol. Weld. Join. 18 (5) (2013) 361–403.
  • [14] N. Akkas, Welding time effect on tensile–shear loading in resistance spot welding of SPA-H weathering steel sheets used in railway vehicles, Acta Phys. Pol. A 131 (2017) 52–54.
  • [15] A. Hasanbasoglu, R. Kaçar, Resistance spot weldability of dissimilar materials (AISI 316L–DIN EN 10130-99 steels), Mater. Des. 28 (6) (2007) 1794–1800.
  • [16] F. Hayat, The effects of the welding current on heat input, nugget geometry, and the mechanical and fractural properties of resistance spot welding on Mg/Al dissimilar materials, Mater. Des. 32 (4) (2011) 2476–2484.
  • [17] T. Jagadeesha, Experimental studies in weld nugget strength of resistance spot-welded 316L austenitic stainless steel sheet, Int. J. Adv. Manuf. Technol. 93 (1) (2017) 505–513.
  • [18] M. Alizadeh-Sh, S.P.H. Marashi, Resistance spot welding of dissimilar austenitic/duplex stainless steels: microstructural evolution and failure mode analysis, J. Manuf. Process. 28 (2017) 186–196.
  • [19] K. Vignesh, A. Elaya Perumal, P. Velmurugan, Optimization of resistance spot welding process parameters and microstructural examination for dissimilar welding of AISI 316L austenitic stainless steel and 2205 duplex stainless steel, Int. J. Adv. Manuf. Technol. 93 (1) (2017) 455–465.
  • [20] X. Kong, Q. Yang, B. Li, G. Rothwell, R. English, X.J. Ren, Numerical study of strengths of spot-welded joints of steel, Mater. Des. 29 (8) (2008) 1554–1561.
  • [21] K.N. Wang, Eu-Gene, Calibration Of The Johnson–Cook Failure Parameters As The Chip Separation Criterion In The Modelling Of The Orthogonal Metal Cutting Process, 2016.
  • [22] N. Sawarkar, G. Boob, Finite element based simulation of orthogonal cutting process to determine residual stress induced, International Conference on Quality Up-gradation in Engineering, Science and Technology, IJCA J. (2014) 33–38.
  • [23] P. Krasauskas, S. Kilikevicius, R. C?esnavicius, D. Pacenga, Experimental analysis and numerical simulation of the stainless AISI 304 steel friction drilling process, Mechanika 20 (6) (2014) 590–595.
  • [24] M. Pouranvari, Marashi Pirooz, Failure mode transition in AISI 304 resistance spot welds, Weld. J. 91 (11) (2012) 303–309.
  • [25] M. Pouranvari, H.R. Asgari, S.M. Mosavizadch, P.H. Marashi, M. Goodarzi, Effect of weld nugget size on overload failure mode of resistance spot welds, Sci. Technol. Weld. Join. 12 (3) (2007) 217–225.
  • [26] X. Yuan, C. Li, J. Chen, X. Li, X. Liang, X. Pan, Resistance spot welding of dissimilar DP600 and DC54D steels, J. Mater. Process. Technol. 239 (2017) 31–41.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-929fcee1-3915-40b6-8db1-43c8170886e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.