PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical approach to the controllability of fractional order impulsive differential equations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this manuscript, a numerical approach for the stronger concept of exact controllability (total controllability) is provided. The proposed control problem is a nonlinear fractional differential equation of order α ∈ (1, 2] with non-instantaneous impulses in finite-dimensional spaces. Furthermore, the numerical controllability of an integro-differential equation is briefly discussed. The tool for studying includes the Laplace transform, the Mittag-Leffler matrix function and the iterative scheme. Finally, a few numerical illustrations are provided through MATLAB graphs.
Wydawca
Rocznik
Strony
193--207
Opis fizyczny
Bibliogr. 25 poz., wykr.
Twórcy
  • Department of Mathematics and Computer Science, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam(A.P.), 515 134, India
  • Department of Mathematics, National Institute of Technology Hamirpur, Hamirpur (H.P.), 177 005, India
autor
  • Department of Mathematics, National Institute of Technology Hamirpur, Hamirpur (H.P.), 177 005, India
  • Department of Applied Mathematics, Mallory Hall, Virginia Military Institute, Lexington, VA 24450, USA
Bibliografia
  • [1] Q. Yang and D. Chen, Fractional calculus in image processing: a review, Fract. Calc. Appl. Anal. 19(2016), no. 5, 1222-1249.
  • [2] R. Magin, M. D. Ortigueira, I. Podlubny, and J. J. Trujillo, On the fractional signals and systems, Signal Proc. 91(2011), 350-371.
  • [3] R. L. Magin, Fractional Calculus in Bioengineering, Begell House Redding, 2006.
  • [4] R. L. Bagley and P. J. Torvik, On the fractional calculus model of viscoelastic behavior, J. Rheol. 30(1986), 133-155.
  • [5] T. Wenchang, P. Wenxiao, and X. Mingyu, A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates, Int. J. Nonlinear Mech. 38(2003), 645-650.
  • [6] K. Balachandran and V. Govindaraj, Numerical controllability of fractional dynamical systems, Optimization 63(2014), 1267-1279.
  • [7] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
  • [8] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
  • [9] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
  • [10] M. Zayernouri and G. E. Karniadakis, Fractional special collocation method, SIAM J. Sci. Comput. 36(2014), no. 1, A40-A62.
  • [11] M. Zayernouri and G. E. Karniadakis, Fractional Sturm-Liouville eigen-problems: theory and numerical approximation, J. Comput. Phys. 252(2013), 495-517.
  • [12] M. Muslim, A. Kumar, and M. Fečkan, Existence, uniqueness and stability of solutions to second order nonlinear differential equations with non-instantaneous impulses, J. King Saud Univ. - Sci. 30(2016), no. 2, 204-213.
  • [13] S. Hristova and R. Terzieva, Lipschitz stability of differential equations with non-instantaneous impulses, Adv. Difference Equ. 2016(2016), 322, DOI: 10.1186/s13662-016-1045-6.
  • [14] R. Agarwal, S. Hristova, and D. Ó Regan, Practical stability of differential equations with non-instantaneous impulses, Differ. Equ. Appl. 9(2017), no. 4, 413-432.
  • [15] R. Agarwal, D. Ó Regan, and S. Hristova, Stability by Lyapunov like functions of nonlinear differential equations with non-instantaneous impulses, J. Appl. Math. Comput. 53(2017), no. 1-2, 147-168.
  • [16] R. Agarwal, S. Hristova, and D. Ó Regan, Non-Instantaneous Impulses in Differential Equations, Springer, New York City, 2017.
  • [17] E. Hernández and D. Ó Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc. 141(2013), 1641-1649.
  • [18] J. Wang and M. Fečkan, A general class of impulsive evolution equations, Topol. Methods Nonlinear Anal. 46(2015), 915-933.
  • [19] J. Wang, A. G. Ibrahim, M. Fečkan, and Y. Zhou, Controllability of fractional non-instantaneous impulsive differential inclusions without compactness, IMA J. Math. Control Inform. 36(2017), 443-460.
  • [20] M. Muslim and A. Kumar, Controllability of fractional differential equation of order α ∈ [1,2] with non-instantaneous impulses, Asian J. Control 20(2018), no. 2, 935-942.
  • [21] A. Kumar, M. Muslim, and R. Sakthivel, Controllability of the second-order nonlinear differential equations with non-instantaneous impulses, J. Dyn. Control Syst. 24(2018), 325-342.
  • [22] D. Chalishajar and A. Kumar, Total controllability of the second order semi-linear differential equation with infinite delay and non-instantaneous impulses, Math. Comput. Appl. 23(2018), no. 3, 32, DOI: 10.3390/mca23030032.
  • [23] T. Kaczorek, Selected Problems of Fractional Systems Theory, Springer-Verlag, Berlin, 2011.
  • [24] C. A. Monje, Y. Q. Chen, B. M. Vinagre, X. Xue, and V. Feliu, Fractional-Order Systems and Controls: Fundamentals and Applications, Springer, London, 2010.
  • [25] K. Balachandran, V. Govindaraj, L. Rodriguez-Germa, and J. J. Trujillo, Controllability of nonlinear higher order fractional dynamical systems, Nonlinear Dyn. 71(2013), 605-612.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-929f146b-6aff-4490-ace9-3c499cd4a62f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.