PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review of potential advantages and pitfalls of numerical simulation of self-excited vibrations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Machining stability is one of the most important factors influencing the geometrical and dimensional accuracy of the machined parts. Regenerative chatter is a major limitation to the productivity and quality of machining operations due to poor surface finish and faster tool wear. In general there are two methods of stability analysis: solution of differential equations of the system in frequency domain or numerical simulation in time domain. Fast and easy calculations in the frequency domain are possible using a simplified linear model of cutting process. Important limitations of these methods are difficult or impossible considering of changes of dynamic cutting force coefficients and dynamic characteristic of a process. Numerical simulation has not these limitations and regards many specific phenomena of the cutting processes, therefore it is often used in the stability analysis. The paper presents main advantages of numerical simulation, which differentiates it from the analytical solutions, as well as some inevitable difficulties and limitations.
Rocznik
Strony
77--90
Opis fizyczny
Bibliogr. 41 poz., rys.
Twórcy
  • Warsaw University of Technology, Faculty of Production Engineering, Poland
  • Warsaw University of Technology, Faculty of Production Engineering, Poland
Bibliografia
  • [1] AHMADI K., ISMAIL S., 2011, Analytical stability lobes including nonlinear process damping effect on machining chatter, International Journal of Machine Tools & Manufacture, 51, 296–308.
  • [2] AHMADI K., SMAIL S. I., 2010, Experimental investigation of process damping nonlinearity in machining chatter, International Journal of Machine Tools & Manufacture, 50, 1006-1014.
  • [3] ALTINTAS Y., BUDAK E., 1995, Analytical prediction of stability lobes in milling, CIRP Annals - Manufacturing Technology, 44/1, 357–362.
  • [4] ALTINTAS Y., EYNIAN M., ONOZUKA H., 2008, Identification of dynamic cutting force coefficients and chatter stability with process damping, CIRP Annals - Manufacturing Technology, 57/1, 371–374.
  • [5] ALTINTAS Y., LEE P., 1998, Mechanics and dynamics of ball end milling, J. Manuf. Sci. Eng., 120/4, 684-692.
  • [6] ALTINTAS Y., STEPAN G., MERDO D., DOMBOVARI Z., 2008, Chatter stability of milling in frequency and discrete time domain, CIRP Journal of Manufacturing Science and Technology, 1, 35–44.
  • [7] ALTINTAS Y., WECK M., 2004, Chatter stability of metal cutting and grinding, CIRP Annals - Manufacturing Technology, 53/2, 619–642.
  • [8] BUDAK E. L., TUNC T., 2010, Identification and modeling of process damping in turning and milling using a new approach, CIRP Annals - Manufacturing Technology, 59/1, 403–408.
  • [9] DESAI K., GARWAL AP.K., RAO, P.V.M., 2009, Process geometry modeling with cutter run out for milling of curved surfaces, International Journal of Machine Tools & Manufacture, 49, 1015–1028.
  • [10] ENGIN S., ALTINTAS Y., 2001, Mechanics and dynamics of general milling cutters, International Journal of Machine Tools & Manufacture, 41, 2195–2231.
  • [11] FAASSEN H., 2007, An improved tool path model including periodic delay for chatter prediction in milling, Journal of Computational and Nonlinear Dynamics, 2, 167-179.
  • [12] GONZALO O., BERISTAIN J., 2010, Time domain identification of the milling specific force coefficients with cutter run-out, Proceedings of 4th CIRP Int. Conf. HPC, paper A10.
  • [13] IMANI B.M., SADEGHI M.H., ELBESTAWI M.A., 1998, An improved process simulation system for ball-end milling of sculptured surfaces, International Journal of Machine Tools & Manufacture, 38, 1089–1107.
  • [14] INSPERGER T., STEPAN G., 2009, Increased stability of low-speed turning through a distributed force and continuous delay model, Journal of Computational and Nonlinear Dynamics, 4, 403-408.
  • [15] JEMIELNIAK K., 1992, Modelling of dynamic cutting coefficients in three-dimensional cutting, International Journal of Machine Tools & Manufacture, 32/4, 509-519.
  • [16] JEMIELNIAK K., NEJMAN M., ŚNIEGULSKA-GRĄDZKA D., 2012, Analytical and numerical determination of stability limit in turning, Inzynieria Maszyn, 17, 81-92, (in Polish).
  • [17] JEMIELNIAK K., WIDOTA A., 1989, Numerical simulation of non-linear chatter vibration in turning, International Journal of Machine Tools & Manufacture , 29, 239-247.
  • [18] JEMIELNIAK, K. WYPYSIŃSKI R., 2012, Determination of stability limit in turning by numerical simulation, InŜynieria maszyn, 17/1, 93-104.
  • [19] KAYMAKCI M., KILIC Z.M., ALTINTAS Y., 2012, Unified cutting force model for turning, boring, drilling and milling operations, International Journal of Machine Tools & Manufacture, 54-55, 34-45.
  • [20] KEGG R.L., 1969, Chatter behaviour at low cutting speeds, CIRP Annals - Manufacturing Technology, 17/97- 106.
  • [21] KIM S-J, LEE H U, CHO D-W, 2007, Prediction of chatter in NC machining based on a dynamic cutting force model for ball end milling, International Journal of Machine Tools & Manufacture, 47, 1827–1838.
  • [22] KO J.H., 2005, 3D Ball-end milling force model using instantaneous cutting force coefficients, Journal of Manufacturing Science and Engineering, 127, 1-12.
  • [23] LEE B. Y., TARNG Y. S., MA S.C., 1995, Modeling of the process damping force in chatter vibration, International Journal of Machine Tools & Manufacture, 35, 951-962.
  • [24] LI H., LI X.P., CHEN X.Q., 2003, A novel chatter stability criterion for the modelling and simulation of the dynamic milling process in the time domain, Int. J. Adv. Manuf. Technol., 22, 619–625.
  • [25] LI H., SHIN Y.C., 2006, A comprehensive dynamic end milling simulation model, , J. of Manuf. Science and Eng., 128, 86-95.
  • [26] NIGM M.M., SADEK M.M., TOBIAS S.A., 1972, Prediction of dynamic cutting coefficients from steady state cutting data, CIRP Annals - Manufacturing Technology, 21/1, 97–98.
  • [27] MAHDI, E. 2010, Chatter stability of turning and milling with process damping, PhD thesis, The University of British Columbia, Vancouver.
  • [28] MARTELLOTI, M.E. 1941, An analysis of the milling process, Trans. of the ASME, 63, 677-700.
  • [29] MEHRABADI I.M. et al., 2009, Investigating chatter vibration in deep drilling, including process damping and the gyroscopic effect, International Journal of Machine Tools & Manufacture, 49, 939–946.
  • [30] MOON F. C., KALMAR-NAGY T., 2001, Nonlinear models for complex dynamics in cutting materials, Phil. Trans. R. Soc. Lond. A, 359, 695-711.
  • [31] OTAKAR D., POLACEK M., SPACEK L., TLUSTY J., 1962, Selbsterregte Schwingungen an Werkzeugmaschinen, Veb Verlag Technik.
  • [32] PARIS H., BRISSAUD D., GOUSKOV A., 2007, A more realistic cutting force model at uncut chip thickness close to zero, CIRP Annals - Manufacturing Technology, 56, 415-418.
  • [33] RAHNAMA R., SASJJADI M., PARK S.S., 2009, Chatter suppression in micro end milling with process damping, Journal of Materials Processing Technology, 209, 5766–5776.
  • [34] ROUKEMA J., ALTINTAS Y., 2007, Generalized modeling of drilling vibrations. Part I - Time domain model of drilling kinematics, dynamics and hole formation, International Journal of Machine Tools & Manufacture, 47, 1455–1473.
  • [35] SELLMEIER V., DENKENA B., 2012, High speed process damping in milling, CIRP Annals - Manufacturing Technology, 5, 8–19.
  • [36] SELLMEIER V., HACKELOEER F., DENKENA B., 2009, Process damping in milling – measurement of process damping forces for chamfered tools by means of an electromagnetically guided spindle, 12th CIRP Conf. on Modelling of Machining Operations.
  • [37] TLUSTY J., ISMAIL F., 1981, Basic non-linearity in machining chatter, CIRP Annals - Manufacturing Technology, 30, 21–25.
  • [38] TLUSTY J., MACNEIL P., 1975, Dynamics of cutting forces in end milling, CIRP Annals - Manufacturing Technology, 24/1, 21-25.
  • [39] TOBIASS, A., FISHWICK W., 1958, Chatter of lathe tools under orthogonal cutting conditions, Trans of ASME:B, 1079–1088.
  • [40] WAN M., ZHANG W-H., TAN G., QING H., 2007, An in-depth analysis of the synchronization between the measured and predicted cutting forces for developing instantaneous milling force model, Int. J. of Mach. Tools & Manuf., 47, 2018–2030.
  • [41] WU D.W., LIU C.R., 1985, An analytical model of cutting dynamics, ASME Journal of Engineering for Industry, 107/2, 107–118
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-929e17fb-a3a3-446f-8454-1cd9abebe192
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.