PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic objects geometry measurement by laser scanning – a case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the study was to analyse of measurement of moving objects by means of the Total Station (TS) method and Terrestrial Laser Scanning (TLS). The subject of the tests was the “Polinka” gondola cable car over the Odra river in Wrocław. Research covered the basic and control measurements. The results of observations of suspension ropes’ deflection of the cable car in kinematical state were compared for various degrees of loading. During the motion of the gondola, the shape of the pull and supporting rope is subject to constant shifts. TS measurements are restricted solely to registering interim positioning of the points of pull lines (measurement of static objects). Laser scanner measurements may reveal changes in the location of many points (i.e. drive lines, catenaries or carriages) within a unit of time. The tests were designed to show whether it is possible to capture the shifts in geometry of the moving object (mainly by means of the TLS methods - in the course of constant vibrating of lines and during the movement of gondolas). The analyses indicated that it is possible to capture the changes of geometry by means of the TLS method, however, upon strictly specified measurement conditions.
Rocznik
Tom
Strony
41--56
Opis fizyczny
Bibliogr. 42 poz., rys.
Twórcy
  • University of Agriculture in Krakow Department of Geodesy 30-149 Kraków, ul. Balicka 253a
  • Wrocław University of Technology Department of Geodesy and Geoinformatics 50-421 Wrocław, ul. Na Grobli 15
Bibliografia
  • Abmayr T., Härtl F., Reinköster M., Fröhlich C. 2012. Terrestrial laser scanning – applications in cultural heritage conservation and civil engineering. International Society for Photogrammetry and Remote Sensing. isprs.org/proceedings/XXXVI/5-W17/
  • Barbarella M., Fiani M., Lugli A. 2013. Landslide monitoring using multitemporal terrestrial laser scanning for ground displacement analysis. Geomatics, Natural Hazards and Risk, 4, 1‒21.
  • Barbarella M., Fiani M., Lugli A. 2017. Uncertainty in Terrestrial Laser Scanner Surveys of Landslides. Remote Sensing of Environment, 9, 113.
  • Bazarnik M. 2016. Application possibilities of 3D terrestrial laser scanning in the reclamation of mining areas. Bulletin of the Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, 94, 149‒159.
  • Bernat M., Byzdra A., Chmielecki M., Laskowski P., Orzechowski J., Rzepa S., Szulwic J., Ziółkowski P. 2016. Zastosowanie naziemnego skaningu laserowego i przetwarzanie danych: inwentaryzacja i inspekcja obiektów budowlanych. I-NET.PL
  • Buchroithner M.F., Gaisecker D.T., Österreich H. 2009. Modeling and Visualization Using Laser Scanner in Documentation of Cultural Heritage Photogrammetrie, Fernerkundung, Geoinformation, 4, 329‒339.
  • Buczek M., Paszek M., Szafarczyk A. 2018. Application of Laser Scanning for Creating Geological Documentation E3S Web of Conferences 35, 04001
  • Choi S.W., Kim B.R., Lee H.M., Kim Y., Park H.S. 2013. A deformed shape monitoring model for building structures based on a 2D laser scanner. Sensors, 13, 6746–6758.
  • Corso J., Roca J., Buill F. 2017. Geometric Analysis on Stone Façades with Terrestrial Laser Scanner Technology. Geosciences, 7, 103.
  • El-Omari S., Moselhi O. 2008. Integrating 3D laser scanning and photogrammetry for progres measurement of construction work. Automation in Construction, 18(1), 1‒9.
  • Galeazzi F., Moyes H., Aldenderfer M. 2014. Defining Best 3D Practices in Archaeology: Comparing Laser Scanning and Dense Stereo Matching Techniques for 3D Intrasite Data Recording, Advances in Archaeological Practice, 2, 4, 353‒365.
  • Gawronek P., Kumosiński W., Kwinta A., Patykowski G., Zygmunt M. 2016. Zastosowanie naziemnego skaningu laserowego w badaniu górniczych obiektów inżynierskich (The application of terrestrial laser scanning in the study of mining engineering objects). Bezpieczeństwo Pracy i Ochrona Środowiska w Górnictwie, 2(258).
  • Ghuffar S., Székely B., Roncat A., Pfeifer N. 2013. Landslide displacement monitoring using 3D range flow on airborne and terrestrial LiDAR data. Remote Sensing, 5, 2720–2745
  • Gikas V. 2012. Three-Dimensional Laser Scanning for Geometry Documentation and Construction Management of Highway. Sensors, 12, 11249‒11270.
  • Gordon S.J., Lichti D.D. 2007. Modeling terrestrial laser scanner data for precise structural deformation measurement. Journal of Surveying Engineering, 133, 72–80.
  • Herráez J., Martínez J.C., Coll E., Martín M.T., Rodríguez J. 2016. 3D modeling by means of videogrammetry and laser scanners for reverse engineering. Measurement, 87, 216–227.
  • https://pl.wikipedia.org/wiki/Kolej_gondolowa_„Polinka”_we_Wrocławiu
  • https://visitwroclaw.eu/miejsce/polinka-wroclaw
  • Jackson T., Shenkin A., Wellpott A., Calders K., Origo N., Disney M., Burt A., Raumonen P., Gardiner B., Herold M., Fourcaud T., Malhi Y. 2019. Finite element analysis of trees in the wind based on terrestrial laser scanning data. Agricultural and Forest Meteorology, 265, 137‒144.
  • Janowski A., Nagrodzka-Godycka K., Szulwic J., Ziolkowski P. 2016. Remote sensing and photogrammetry techniques in diagnostics of concrete structures. Computers and Concrete, 18, 3, 405‒420.
  • Jo Y.H., Hong S. 2019. Three-Dimensional Digital Documentation of Cultural Heritage Site Based on the Convergence of Terrestrial Laser Scanning and Unmanned Aerial Vehicle Photogrammetry. ISPRS Int. J. Geo-Inf., 8.
  • Jones R.R., Kokkalas S., McCaffrey K.J.W. 2009. Quantitative analysis and visualization of nonplanar fault surfaces using terrestrial laser scanning (LIDAR). The Arkitsa fault, central Greece, as a case study. Geosphere, 5, 465‒482.
  • Kamiński W., Bojarowski K., Dumalski A., Mroczkowski K., Trystuła J. 2008. Possibilities of using laser scanner Scanstation from Leica to research deformation of building structures. Technical transactions, Wydawnictwo Politechniki Krakowskiej, 2-Ś.
  • Klimkowska H., Wróbel A. 2006. Uwagi o wykorzystaniu tachimetrów bezlustrowych w inwentaryzacji architektonicznej (Remarks on the use of reflectorless total stations in architectural inventory). Archives of Photogrammetry, Cartography and Remote Sensing, 16.
  • Kraszewski B. 2012. Utilization of terrestial laser scanning for office inventory. Archives of Photogrammetry, Cartography and Remote Sensing, 23, 187–196.
  • Kwinta A., Ważydrąg K., Zygmunt M. 2018. Analysis of power lines span geometry based on TLS measurements. E3S Web of Conferences, 55, 00013.
  • Lenda G. 2005. Zastosowanie funkcji sklejanych w zautomatyzowanym procesie geodezyjnej kontroli kształtu powierzchni obiektów budowlanych (Application of glued functions in the automated geodetic process of controlling the shape of the surface of buildings). Doctoral dissertation, AGH Kraków.
  • Mill T., Ellmann A. 2019. Assessment of a long-normal uncertainties for application to terrestrial laser scanning surveys of engineering structures. Survey Review, 51(364), 1‒16.
  • Olsen M.J., Kuester F., Chang B.J., Hutchinson T.C. 2010. Terrestrial laser scanning-based structural damage assessment. Journal of Computing in Civil Engineering, 24(3), 264‒272.
  • The Ordinance of the Minister of Transport and Maritime Economy on the technical conditions to be met by railway structures and their location. Dz. U. 1998, Nr 151, poz. 987.
  • Quagliarini E., Clini P., Ripanti M. 2017. Fast, low cost and safe methodology for the assessment of the state of conservation of historical buildings from 3D laser scanning: The case study of Santa Maria in Portonovo (Italy). Journal of Cultural Heritage, 24, 175–183.
  • Pilecka E., Manterys T. 2013. Badania przemieszczeń osuwiska w Mogilanach naziemnym skanerem laserowym (Investigation of dislocation of the landslide in Mogilany with a terrestrial laser scanner). Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią, Polskiej Akademii Nauk, 84.
  • Pilecki R. 2012. The use of ground-based laser scanner. Technical transactions. Wydawnictwo Politechniki Krakowskiej, 26, 109.
  • Roca-Pardiñas J., Ordóñez C., Cabo C., Menéndez-Díaz A. 2017. Assessing planar asymmetries in shipbuilding from point clouds Measurement. Journal of the International Measurement Confederation, 100, 252‒261.
  • Rüther H., Held Ch., Bhurtha R., Schröder R., Wessels S. 2013. Challenges in Heritage Documentation with Terrestrial Laser Scanning. European Scientific Journal, 9, 24.
  • Slob S., Hack R. 2004. 3D Terrestrial Laser Scanning as a New Field Measurement and Monitoring Technique, Engineering Geology for Infrastructure Planning in Europe Lecture Notes in Earth Sciences, 104, 179‒189.
  • Soudarissanane S., Lindenbergh R., Gorte B. 2008. Reducing the error in terrestrial laser scanning by optimizing the measurement set-up. Proceedings of International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, XXXVII (Part B5), 615–620.
  • Szafarczyk A., Gawałkiewicz R. 2018. Defining the Cubature Changes of Historic St. Kinga Chamber in Bochnia Salt Mine, Using Laser Scanning Technology. E3S Web of Conferences, 35, 04006.
  • Tong X., Liu X., Chen P., Liu S., Luan K., Li L., Liu S., Liu X., Xie H., Jin Y., Hong Z. 2015. Integration of UAV-Based Photogrammetry and Terrestrial Laser Scanning for the ThreeDimensional Mapping and Monitoring of Open-Pit Mine Areas. Remote Sensing of Environment, 7, 6635‒6662.
  • Uchański Ł., Soerensen L. 2010. Technology of terrestrial laser scanning in problems of reverse engineering and dynamic process analysis. Archiwum Fotogrametrii, Kartografii i Teledetekcji, 21, 415–424.
  • Xu X., Zhao X., Yang H., Neumann I. 2017. Tls-based feature extraction and 3d modeling for arch structures. Journal of Sensors, article 9124254,
  • Zaczek-Peplinska J., Kowalska M.E. 2016. Terrestrial laser scanning in monitoring hydrotechnical objects. Journal of Ecological Engineering, 17, 4, 120‒128.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92945979-3eb0-49bd-ab64-aab813ccb328
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.