PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selected Tribological Properties of A390.0 Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Emergence of new designs for internal combustion engines resulted in a necessity to search for new materials which will rise to excessive technological requirements under operating conditions of modern internal combustion engines of up to 150 kW. Focusing only on material properties, theoretically existing alloys should meet presents requirements. More importantly, existing materials are well fitted to the entire crank-piston system. Thus, there is a need for a more thorough examination of these materials. The paper presents studies on determination of coefficient of friction μ and wear for the A390.0 alloy modified with AlTi5B master alloy combined with EN GJL-350 cast iron. The characteristics of a T-11 tribological tester (pin on disc) used for the tests, as well as the methodology of the tribological tests, were described. Also, the analysis of the surface distribution of elements for the pin and the disc was presented. The studies were realized in order to find whether the analyzed alloy meets the excessive requirements for the materials intended for pistons of modern internal combustion engines. The results show that the A390.0 alloy can only be applied to a load of 1.4 MPa. Above this value was observed destructive wear, which results in the inability to use it in modern internal combustion engines.
Rocznik
Strony
175--178
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Transport, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
  • Faculty of Materials Engineering and Metallurgy, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
Bibliografia
  • [1] Ben M., Cairns A., Ganippa, L. & Bassett, M. (2012). A study of combining gasoline engine downsizing and controlled auto-ignition combustion. Journal of KONES Powertrain and Transport. 19(1), 289-300.
  • [2] Neil, F., Blaxill, H., Lumsden, G. & Bassett, M. (2009). Challenges for increased efficiency through gasoline engine downsizing. SAE Int. J. Engines. 2(1), 991-1008.
  • [3] Enrico, A., Sepe, R., Parente, A. & Pirelli, M. (2017). Vibro-Acoustic Numerical Analysis for the Chain Cover of a Car Engine. Applied Sciences. 7(6), 610.
  • [4] Pablo, O., Dolz, V., Arnau, F.J. & Belmonte, M. (2013). Determination of heat flows inside turbochargers by means of a one dimensional lumped model. Mathematical and Computer Modelling. 57(7-8), 1847-1852.
  • [5] Wu, S.S., Lin, W.Y. & Dai, S.W. (2016). Dynamic characteristics of automatic-centering rotary platform for cars and its simulation. Journal of South China University of Technology. 44(12), 23-29.
  • [6] Janik, R. & Kochel, R. (2003). Analysis of piston defects in internal combustion engines against the background of material faults of castings made from AlSi alloys. Journal of KONES Internal Combustion Engines. 10(1-2), 15-22.
  • [7] Posmyk, A. & Witaszek, S. (2007). Influence of components made from AIMC composites on the operation of an internal combustion engine. Kompozyty. 7(1), 13-18. (in Polish).
  • [8] Orłowicz, A., Tupaj, M., Mróz, M. & Trytek, A. (2015). Combustion engine cylinder lines made of Al-Si alloys. Archives of Foundry Engineering. 15(2), 71-74.
  • [9] Kakaee, A-H. & Keshavarz. M. (2017). Simultaneous dynamic optimization of valves timing and waste gate to improve the load step transient response of a turbocharged spark ignition engine. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 39(7), 2383-2394.
  • [10] Romankiewicz, F. (2000). Modification of silumin AK12. Solidification of Metals and Alloys. 43(2), 487-492.
  • [11] Piątkowski, J. (2015). Influence of technological options on the material reliability of AlSi17Cu5 cast alloy. Solid State Phenomena. 229, 1662-1668.
  • [12] Piątkowski, J., Wieszała, R. & Ziemnicka-Sylwester, M. (2016). The effect of technological parameters on the microstructure and mechanical properties of AlSi17Cu4 alloy. Material Science. 22(3), 330-336.
  • [13] Bolibruchova, D. & Richtarech, L. (2013). Effect of adding iron to the AlSi17Mg0.3 (EN AC 42100, A335) alloy. Manufacturing Technology. 13(3), 276-281.
  • [14] Dudek, P., Darłak, P., Fajkiel, A. & Reguła, T. (2008). Evaluating the feasibility of ma king aluminium alloy nanomodifiers by the metod of mechanical alloying. Prace Instytutu Odlewnictwa. 3, 31-47.
  • [15] Lipiński, T. Modification of the Hypo-Eutectic Al-Si Alloys with an Exothermic Modifier. Archives of Metallurgy and Materials. 58(2), 453-458.
  • [16] Instytut Technologii Eksploatacji – Państwowy Instytut Badawczy w Radomiu – karta charakterystyki urządzenia T-11 typu trzpień tarcza. 2017. Radom.
  • [17] Wieczorek, J., Dyzia, M. & Dolata, A. (2012). Machinability of aluminium matrix composites. Solid State Phenomena. 191, 75-80.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-928e8b64-c6e5-4f58-bd9e-69b40f2b7217
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.