PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An advanced thermal-FSI approach of an evaporation of air heat pump

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents selected problems of numerical modelling of an advanced thermal- FSI (Fluid solid interaction) approach of evaporator of air heat pump. The example of a fin-tube evaporator has been studied, focusing on obtaining the heat exchanger characteristics applying two-phase flow model for the in-tube refrigerant flow. Special attention is given to heat transfer between separated medium for different air velocity and changed refrigerant mass flow in-tube.
Rocznik
Tom
Strony
111--141
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
  • Energy Conversion Department, The Szewalski Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • Conjoint Doctoral School at the Faculty of Mechanical Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Energy Conversion Department, The Szewalski Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • Conjoint Doctoral School at the Faculty of Mechanical Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
  • Energy Conversion Department, The Szewalski Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
  • [1] Abdulsayid A.: Modeling of fluid flow in 2D triangular, sinusoidal, and square corrugated channels. World Academy of Science, Eng. Technol. 71(2012), 34–52.
  • [2] Austin B.T., Sumathy K.: Transcritical carbon dioxide heat pump systems: a review. Elsevier, Renew. Sust. Energ. Rev. 15(2001), 4013– 4029.
  • [3] Badur J.: Five lecture of contemporary fluid termomechanics. Gdańsk 2005. (in Polish).
  • [4] Badur J., Banaszkiewicz M.: Model of the ideal fluid with scalar microstructure. An application to flashing flow of water. Transactions IFFM 105(1999), 115–152.
  • [5] Badur J.,Charun H.: Selected problems of heat exchange modelling in channels with ball turbulisers. Arch. Thermodyn. 28(2007), 1, 65– 87.
  • [6] Badur J., Ziółkowski P.: Further remarks on the surface visimperssa caused by a fluid-solid contact. In: Proc. 12th Joint European Thermodynamics Conf., Brescia July 1–6, 2013, 581–586.
  • [7] Badur J., Ziółkowski P., Zakrzewski W., Sławiński D., Kornet S., Kowalczyk T., Hernet J., Piotrowski R., Felicjancik J., Ziółkowski P.J.: An advanced Thermal–FSI approach to flow heating/cooling. J. Phys.: Conf. Ser. 530(2014), 10.1088/1742–6596/530/1/012039.
  • [8] Banaszek J., Rebow M.: Reliability of numerical simulation in composed heat exchange. In: Proc. 18th Thermodynamics Cong. Vol. I, Warsaw 2002, p. 45 (in Polish).
  • [9] Bartosiewicz J., Bogusławski L., Wróblewska A.: Numerical analysis of heat transport in channels with embossed intensifiers. In: Proc. 18th Thermodynamics Cong. Vol. I, Warsaw 2002, p. 67.
  • [10] Bejan A.: Entropy Generalization Minimization. Boca Raton: CRC, 1996.
  • [11] Bejan A, Kraus A.D.: Heat Transfer Handbook.Wiley & Sons, Hoboken 2003.
  • [12] Bilicki Z., Badur J.: A thermodynamically consistent relaxation model for a turbulent, binary mixture undergoing phase transition. J. Non- Equil. Thermody. 28(2003), 145–172.
  • [13] Bilicki Z., Mikielewicz J.: Minimum energy and a minimum of entropy production in application to calculate the filling level in a two-phase bubble flow. Arch. Thermodyn. 5(1984), 84, 101–118 (in Polish).
  • [14] Bogusławski L.: Turbulence modelling in non-izothermic flows. Scientific Papers of Łódź University of Technology 197(1988), 558, 101–122. (in Polish)
  • [15] Bonca Z., Butrymowicz D., Targański W., Hajduk T.: Guide, New refrigerants and heat medium. Thermal, chemical and usable properties. IPPU MASTA, 2004. (in Polish).
  • [16] Cano-Andrade S., Beretta G. P., von Spakovsky M. B.: Nonequilibrium thermodynamics modelling of an atom-field state evolution with comparisons to published experimental data. In: Proc. 12th Joint European Thermodynamics Conf., Brescia July 1–6, 2013, 430–436.
  • [17] Charun H.: Comparatory research of convective heat exchange intensification with ball turbulizers. Ciepłownictwo, Ogrzewnictwo, Wentylacja 1(2005), 3–8 (in Polish).
  • [18] Fang X., Zhou Z., Li D..: Review of correlations of flow boiling heat transfer coefficients for carbon dioxide. Int. J. Refrig. (2013). Doi: 10.1016/j.ijrefrig.2013.05.015.
  • [19] Feidt M.: Thermodynamics of energy systems; a review and perspectives. J. Appl. Fluid Mech. 5(2012), 2, 85–98.
  • [20] Feidt M.: Energy engineering: From components design to intergration and control system. Dunod, Paris 2014
  • [21] Fernandes C., Dias R., Nobrega J., Maia J.: Laminar flow in chevrontype plate heat exchangers: CFD analysis of tortuosity, shape factor and friction factor. Chem. Eng. Process. 46(2007), 825–833.
  • [22] Ferziger J.H., Perić M.: Computatonal Methods for Fluid Dynamics. Springer, Berlin 1999.
  • [23] Fodemski T.R., Plocek M.: Analysis of characteristics of thermo-flow installations selected elements based on measurements and numerical simulation (using CFX-Flow 3D code). In: proc. 10th Symp. of Heat and Mass Transfer, Wrocław 1998, 242–247 (in Polish).
  • [24] Gherasim I., Galanis N., Nguyen C.: Effects of smooth longitudinal passages and port configuration on the flow and thermal fields in a plate heat exchanger. Appl. Therm. Eng. 31 (2011), 4113–4124.
  • [25] Gherasim I., Galanis N., Nguyen C.: Heat transfer and fluid flow in a plate heat exchanger. Part II: Assessment of laminar and twoequation turbulent models. Int. J. Therm. Sci. 50(2011), 1499–1511.
  • [26] Gherasim I., Taws M., Galanis N., Nguyen C.: Heat transfer and fluid flow in a plate heat exchanger. Part I. Experimental investigation. Int. J. Therm. Sci. 50(2011), 1492–1498.
  • [27] Gryboś R.: Rudiments of fluid mechanics. PWN, Warsaw 1998 (in Polish).
  • [28] Gyftopoulos E.P., Beretta G.P.: Thermodynamics Foundations and Applications. Dover Pub. Mineola NY, 2005.
  • [29] Heo J., Park H., Yun R.: Condensation heat transfer and pressure drop characteristics of CO2 in a microchannel. Int. J. Refrig. 09/2013, 36(6), 1657-1668. DOI: 10.1016/j.ijrefrig.2013.05.008.
  • [30] Jin Z., Park G., Lee Y., Choi S., Chung H., Jeong H.: Design and performance of pressure drop and flow distribution to the channel in plate heat exchanger. In: Proc. EngOpt 2008 – Int. Conf. Engineering Optimization, Rio de Janeiro, June 01–05, 2008.
  • [31] Kanaris A.G., Mouza A.A., Paras S.V.: Optimal design of a plate heat exchanger with undulated surfaces. Int. J. Therm. Sci. 48(2009), 1184– 1195.
  • [32] Karaszkiewicz E.: The Outline of the Vector and Tensor Theory. PWN, Warsaw 1976 (in Polish).
  • [33] Karcz M., Badur J.: An alternative two-equation turbulent heat diffusivity closure. Int. J. Heat Mass Tran. 48(2005), 2013–2022.
  • [34] Kazimierski Z.: Numerical solving of three-dimensional turbulent flows. Ossolineum, Wrocław-Warszawa-Kraków 1992 (in Polish).
  • [35] Klaczak A.: Spiral turbulizers usability in heat exchanger reinforcment and bulding. Ciepłownictwo Ogrzewnictwo Wentylacja 7(1971) p. 197 (in Polish).
  • [36] Kornet S., Badur J.: Non-equilibrium phase transition. Logistyka 4(2012), 225–233.
  • [37] Kowalczyk S., Karcz M., Badur J.: Analysis of thermodynamic and material properties assumptions for three-dimensional SOFC modeling. Arch. Thermodyn. 27(2006), 21–38.
  • [38] Launder B.E., Spalding D.B.: The numerical computation of turbulent flows. Comput. Methods Appl. M. Eng. 3(1974), 2, 269–292.
  • [39] Lin K.-H., Kuo C.-S., Hsieh W.-D., Wang C.-C.: Modeling and simulation of the transcritical CO2 heat pump system. Int. J. Refrig. (2013). DOI: 10.1016/j.ijrefrig.2013.08.008.
  • [40] Madejski J.: Theory of Heat Transfer. Szczecin University of Technology, Szczecin 1998 (un Polish).
  • [41] Madejski P., Taler D.: Analysis of temperature and stress distribution of superheater tubes after attemperation or sootblower activation. Energ. Convers. Manage. 71(2013), 131–137.
  • [42] Martinez-Ballester S., Corberan J., Gonzalvez-Macia J.: Numerical model for microchannel condensers and gas coolers: Part I – Model description and validation. Int. J. Refrig. 36(2013), 173–190.
  • [43] Martinez-Ballester S., Corberan J., Gonzalvez-Macia J.: Numerical model for microchannel condensers and gas coolers: Part II – Simulation studies and model comparison. Int. J. Refrig. 36(2013), 191–202.
  • [44] Nastałek L., Karcz M., Sławiński D., Zakrzewski W., Ziółkowski P., Szyrejko C., Topolski J., Werner R., Badur J.: On the internal efficiency of a turbine stage: classical and computational fluid dynamics definitions. Transactions IFFM 124(2012), 17–39.
  • [45] Rup K., Wais P.: A k-ε model with variable Prandtl number. In: Proc. 10th Symp. of Heat and Mass Transfer, Wrocław 1998, Part 2, 777–783 (in Polish).
  • [46] Sanaye S., Dehghandokht M.: Thermal modeling of mini-channel and laminated types evaporator in mobile air conditioning system. Int. J. Automotive Eng. 2(2012), 2, 68–83.
  • [47] Schnerr H., Badur J.: Multiphase flows and problems related to the condensation and cavitation processes. Rep. IFFM PASci 23/02, Gdańsk 2002, 1–44.
  • [48] Taler D., Ocłoń.: Thermal contact resistance in plate finned-and-tube heat exchangers, determined by experimental data and CFD simulations. Int. J. Therm. Sci. 84(2014), 309–22.
  • [49] Taler J., Duda P., Węglowski B., Zima W., Grądziel S., Sobota T., Taler D.: Identification of local heat flux to membrane water-walls in steam boilers. Fuel 88(2009), 305–11.
  • [50] Valencia A., Cid M.: Turbulent unsteady flow and heat transfer in channel with periodically mounted squary bars. Int. J. Heat Mass Tran. 45(2002) 1661–1673.
  • [51] Wiśniewski S.: Application of numerical method in convective heat exchange research. Scientific Papers of Łódź University of Technology 197(1998), 558, 191–204 (in Polish).
  • [52] Wiśniewski S., Wiśniewski T.: Heat Transfer. WNT, Warsaw 1994 (in Polish).
  • [53] Ziółkowski P., Badur J.: Navier number and transition to turbulence. J. Phys.: Conf. Ser. 530(2014), 012035.
  • [54] Ziółkowski P., Badur J.: Clean gas technologies towards zero-emission repowering of Pomerania. Transactions IFFM 124 (2012), 51–80.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92892065-92da-44b8-bb4f-7c89b5653bf0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.