Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The pursuit of effective paint management and would healing strategies within modern medicine remains a challenge. Postoperative skin injuries arising from surgeries and traumatic incidents often bring substantial discomfort, necessitating interventions that combine optimal pain relief with accelerated wound recovery. In this research, bupivacaine and carica papaya extract were loaded into polycaprolactone/polyvinyl alcohol membranes in order to develop a pain-relieving wound dressing material for pain management and skin wound healing after surgeries. The in vitro experiments were used to characterize the pain-relieving scaffold. An in vivo study of the excisional wound was carried out in a rat model. Histopathological examinations, wound closure studies, and pain-related behavioral factors were utilized to assess the in vivo pain management and wound healing efficacy of the dressings. Results showed that our developed constructs were not toxic and modulated inflammatory responses. In vivo study showed that this system could successfully close wounds and decrease the sensitivity of animals to painful stimuli. These wound dressings may potentially be considered dual function wound dressings to treat skin injuries.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
143--159
Opis fizyczny
Bibliogr. 42 poz., rys.
Twórcy
autor
- Department of Anesthesiology, Gansu Third People’s Hospital Lanzhou, China
autor
- Department of Zoology, College of Science, King Saud University Riyadh, Saudi Arabia
autor
- Department of Zoology, College of Science, King Saud University Riyadh, Saudi Arabia
autor
- Department of Anesthesiology, Ankang Central Hospital Ankang, China
Bibliografia
- [1] Júnior EML, et al. Nile tilapia fish skin–based wound dressing improves pain and treatment-related costs of superficial partial-thickness burns: a phase III randomized controlled trial. Plast Reconstr Surg. 2021;147(5):1189–1198. doi: 10.1097/PRS.0000000000007895
- [2] Schiefer JL, et al. Comparison of wound healing and patient comfort in partial-thickness burn wounds treated with SUPRATHEL and epictehydro wound dressings. Int Wound J. 2022;19(4):782–790. doi: 10.1111/iwj.13674
- [3] Stamenkovic DM, et al. Updates on wound infiltration use for postoperative pain management: a narrative review. J Clin Med. 2021;10(20):4659. doi: 10.3390/jcm10204659
- [4] Small C, Laycock H. Acute postoperative pain management. Br J Surg. 2020;107(2). doi: 10.1002/bjs.11477
- [5] Macintyre PE, Schug SA. Acute pain management: a practical guide. CRC Press; 2021. doi: 10.1201/9780429295058
- [6] Kowalski G, et al. Analgesic efficacy of sufentanil in dressings after surgical treatment of burn wounds. Burns. 2021;47(4):880–887. doi: 10.1016/j.burns.2020.10.006
- [7] Wu Y, et al. Measures and effects of pain management for wound dressing change in outpatient children in Western China. J Pain Res. 2021:399–406.
- [8] Froutan R, et al. The effect of inhalation aromatherapy on sedation level, analgesic dosage, and bispectral index values during donor site dressing in patients with burns: a randomized clinical trial. Adv Skin Wound Care. 2022;35(1):1–9. doi: 10.1097/01.ASW.0000801544.79621.24
- [9] Ghomi ER, et al. Advances in electrospinning of aligned nanofiber scaffolds used for wound dressings. Curr Opin Biomed Eng. 2022;22:100393. doi: 10.1016/j.cobme.20 22.100393
- [10] Liu Y, et al. Recent development of electrospun wound dressing. Curr Opin Biomed Eng. 2021;17:100247. doi: 10.1016/j.cobme.2020.100247
- [11] Bombin ADJ, Dunne NJ, McCarthy HO. Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Mater Sci Eng C Mater Biol Appl. 2020;114:110994. doi: 10.1016/j.msec.2020.110994
- [12] Gao C, et al. Electrospun nanofibers promote wound healing: theories, techniques, and perspectives. J Mater Chem B. 2021;9(14):3106–3130. doi: 10.1039/D1TB00 067E
- [13] El Fawal G, et al. Fabrication of scaffold based on gelatin and polycaprolactone (PCL) for wound dressing application. J Drug Deliv Sci Technol. 2021;63:102501. doi: 10.1016/j.jddst.2021.102501
- [14] Afzal A, et al. Development and characterization of drug loaded PVA/PCL fibres for wound dressing applications. Polymers (Basel). 2023;15(6):1355. doi: 10.3390/poly m15061355
- [15] Mouro C, Simões M, Gouveia IC. Emulsion electrospun fiber mats of PCL/PVA/chitosan and eugenol for wound dressing applications. Adv Polym Technol. 2019;2019:1–11. doi: 10.1155/2019/9859506
- [16] Nedeljkovic SS, et al. Transversus abdominis plane block with liposomal bupivacaine for pain after cesarean delivery in a multicenter, randomized, double-blind, controlled trial. Anesth Analg. 2020;131(6):1830. doi: 10.1213/ANE.0000000000005075
- [17] Grindy SC, et al. Delivery of bupivacaine from UHMWPE and its implications for managing pain after joint arthroplasty. Acta Biomater. 2019;93:63–73. doi: 10.1016/j.actbio.2019.05.049
- [18] Chahar P, Cummings KC III. Liposomal bupivacaine: a review of a new bupivacaine formulation. J Pain Res. 2012:257–264. doi: 10.2147/JPR.S27894
- [19] Hakim RF. Effect of Carica papaya extract toward incised wound healing process in mice (Mus musculus) clinically and histologically. Evid Based Complement Alternat Med. 2019;2019. doi: 10.1155/2019/8306519
- [20] Nafiu AB, et al. Papaya (Carica papaya L., pawpaw), in Nonvitamin and nonmineral nutritional supplements. Elsevier; 2019. p. 335–359.
- [21] Nayak BS, et al. Wound-healing potential of an ethanol extract of Carica papaya (Caricaceae) seeds. Int Wound J. 2012;9(6):650–655. doi: 10.1111/j.1742-481X.2011.00933.x
- [22] Habibi S, et al. A bilayer mupirocin/bupivacaine-loaded wound dressing based on chitosan/poly (vinyl alcohol) nanofibrous mat: preparation, characterization, and controlled drug release. Int J Biol Macromol. 2023;240:124399. doi: 10.1016/j.ijbiomac.2023.124399
- [23] Dubský M, et al. Pain management in older adults with chronic wounds. Drugs Aging. 2022;39(8):619–629. doi: 10.1007/s40266-022-00963-w
- [24] John JV, et al. Electrospun nanofibers for wound management. ChemNanoMat. 2022;8(7). doi: 10.1002/cnma.202100349
- [25] Gul A, et al. Electrospun antibacterial nanomaterials for wound dressings applications. Membranes (Basel). 2021;11(12):908. doi: 10.3390/membranes11120908
- [26] Hwang PA, et al. Electrospun nanofiber composite mat based on ulvan for wound dressing applications. Int J Biol Macromol. 2023;253:126646. doi: 10.1016/j.ijbiomac.2023.126646
- [27] Alyas S, et al. Anti-inflammatory, antipyretic and analgesic activities of ethanol extract of Carica papaya. J Wildl Biodivers. 2020;4(3):18–23. DOI: doi: 10.22120/jwb.2020.120874.1116
- [28] Pandey S, et al. Anti-inflammatory and immunomodulatory properties of Carica papaya. J Immunotoxicol. 2016;13(4):590–602. doi: 10.3109/1547691X.2016.1149528
- [29] Ramesh K, Kambimath RS, Venkatesan N. Study of immunomodulatory activity of aqueous extract of Carica papaya in Wistar rats. Natl J Physiol Pharm Pharmacol. 2016;6(5):442.
- [30] Calori IR, et al. Polymer scaffolds as drug delivery systems. Eur Polym J. 2020;129:109621. doi: 10.1016/j.eurpolymj.2020.109621
- [31] Yang C, et al. Biomaterial scaffold-based local drug delivery systems for cancer immunotherapy. Sci Bull (Beijing). 2020;65(17):1489–1504. doi: 10.1016/j.scib.2020.04.012
- [32] Gurung S, Škalko-Basnet N. Wound healing properties of Carica papaya latex: in vivo evaluation in mice burn model. J Ethnopharmacol. 2009;121(2):338–341. doi: 10.1016/j.jep.2008.10.030
- [33] Marlinawati IT, Santoso S, Irwanto Y. The effect of papaya leaf extract gel (Carica papaya) on interleukin-1β expression and collagen density (Col1A1) in the back incision wound healing of Wistar rats (Rattus norvegicus). Bahrain Med Bull. 2023;45(1).
- [34] Li X, et al. Antibacterial, antioxidant and biocompatible nanosized quercetin-PVA xerogel films for wound dressing. Colloids Surf B Biointerfaces. 2022;209:112175. doi: 10.1016/j.colsurfb.2021.112175
- [35] Kong YR, et al. Beneficial role of Carica papaya extracts and phytochemicals on oxidative stress and related diseases: a mini review. Biol (Basel). 2021;10(4):287. doi: 10.3390/biology10040287
- [36] Sharma A, et al. Carica papaya L. leaves: deciphering its antioxidant bioactives, biological activities, innovative products, and safety aspects. Oxid Med Cell Longev. 2022;2022. Carica papaya L. leaves: deciphering its antioxidant bioactives, biological activities, innovative products, and safety aspects.
- [37] Agada R, et al. Antioxidant and anti-diabetic activities of bioactive fractions of Carica papaya seeds extract. J King Saud Univ Sci. 2021;33(2):101342. doi: 10.1016/j.jksus.2021.101342
- [38] Asghar N, et al. Compositional difference in antioxidant and antibacterial activity of all parts of the Carica papaya using different solvents. Chem Cent J. 2016;10:1–11. doi: 10.1186/s13065-016-0149-0
- [39] Marlinawati IT, et al. Effect of papaya leaf extract gel (Carica papaya) on incision wound healing in Rattus norvegicus. Med Lab Technol J. 2022;8(2):102–111. doi: 10.31964/mltj.v0i0.455
- [40] Dwivedi MK, et al. Antioxidant, antibacterial activity, and phytochemical characterization of Carica papaya flowers. Beni-Suef Univ J Basic Appl Sci. 2020;9:1–11. doi: 10.1186/s43088-020-00048-w
- [41] Nafiu AB, Rahman MT. Selenium added unripe carica papaya pulp extracts enhance wound repair through TGF-β1 and VEGF-a signalling pathway. BMC Complement Altern Med. 2015;15(1):1–10. doi: 10.1186/s12906-015-0900-4
- [42] Deer TR, et al. Intrathecal bupivacaine for chronic pain: a review of current knowledge. Neuromodulation. 2002;5(4):196–207. doi: 10.1046/j.1525-1403.2002.02030.x
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9286f9ac-756d-4ba2-bc8b-b3cced0d303f