PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Assessment of the determined ground compaction of anthropogenic soil containing hard coal mine waste using the DPSH dynamic probe

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The shortage of investment areas may be at least partially satisfied by the development of reclaimed post-mining areas. These are often subsidence zones levelled with hard coal mine waste or reclaimed sub-level old dumps of this waste. From the geotechnical point of view, such grounds represent anthropogenic grounds containing mine waste, and they are considered as possessing unfavourable properties in terms of the foundation of building structures. The paper initially presents the analysis of the properties of waste from the hard coal mining industry, emphasising that they expose several beneficial properties enabling their safe use. The second part of the article is devoted to the determination of soil density using the DPSH probe. It has been found that the applicable standards lack complex relationships that would allow for a reliable interpretation of the measurement results in a wide range of soil types. The last part presents exemplary results of measurements made with the DPSH probe at a construction site. The obtained results allowed for the formulation of several conclusions regarding the possibility of building on a ground made of hard coal waste and the use of dynamic sounding to assess the geotechnical properties of such anthropogenic soil.
Rocznik
Strony
227--249
Opis fizyczny
Bibliogr. 56 poz., fot., rys., tab., wykr.
Twórcy
  • Silesian University of Technology, Department of Mining, Safety Engineering and Industrial Automation, 44-100 Gliwice, Poland
  • Silesian University of Technology, Department of Mining, Safety Engineering and Industrial Automation, 44-100 Gliwice, Poland
  • Silesian University of Technology, Department of Mining, Safety Engineering and Industrial Automation, 44-100 Gliwice, Poland
Bibliografia
  • [1] J. Palarski, Coal mining operation, mine infrastructure and management unconventional use of coal deposits. Bruksela 13th CAG Meeting, 2012.
  • [2] I. Jonczy, Ł. Gawor, Coal mining andpost-metallurgical dumping grounds and their connections with expolitation of raw materials in the region of Ruda Śląska. Arch. Min. Sci. 62, 301-311 (2017). DOI: https://doi.org/10.15515/amsc-2017-0023.
  • [3] Ł. Gawor, Coal mining waste dumps as secondary deposits – examples from the Upper Silesia Coal Basin and the Lublin Coal Basin. Geology, Geophysics & Environment 40 (3), 285-289 (2014). DOI: https://doi.org/10.7494/geol.2014.40.285.
  • [4] Statistical yearbook of the Republic of Poland. Head Statistical Office, 2019 Warsaw, Poland.
  • [5] A.J. Roque, V. Monteiro, Hazardous Waste Dumped on the Spoils of an Old Coal Mine (Portugal) – Environmental Rehabilitation of the Site for Reuse. [In] Proceedings of the 8th International Congress on Environmental Geotechnics (Zhan L., Chen Y. and Bouazza A. ICEG, Singapore) 1, 764-771 (2019).
  • [6] Environment Protection Agency (EPA). Environmental Management of Landfill Facilities. Solid Waste Disposal, 2019, Canberra, Australia.
  • [7] L. Lewińska-Preist, E. Szram, M.J. Fabiańska, A. Nadudvari, M. Misz-Kennan, A. Abramowicz, Ł. Kruszewski, A. Kita, Selected ions and major and trace elements as contaminantsin coal-waste dump water from the Lower and Upper Silesian Coal Basins (Poland). Int. J. Coal Sci. Technol. 8 (4), 790-814 (2021). DOI: https://doi.org/10.1007/s40789-021-00421-9.
  • [8] T.S. Davis, Brownfields. A comprehensive guide to redeveloping contaminated property. Section of Environment, Energy, and Resources Book Publications Committee, ABA Publishing Chicago, 2002, Illinois, USA.
  • [9] R. Dulias, Anthropogenic Landforms in the Upper Silesian Coal Basin, in: The Impact of Mining on the Landscape. Environmental Science and Engineering, 2016, Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-29541-1_3.
  • [10] S. Klatka, M. Malec, E. Kruk, M. Ryczek, Evaluation of possibility of natural utilisation of coal mine waste used for surface leveling (in Polish). Acta Agrophys 24 (2), 253-262 (2017).
  • [11] M.S. Rosenbaum, A.A. McMillan, J.H. Powell, M.G. Culshaw, K.J. Northmore, Classification of artificial (manmade ground). Engineering Geology 69, 399-409 (2003).
  • [12] W. Czaczkowski, E. Koda, J. Schmid, Estimation of The Density State of Anthropogenic Soils Using a Dynamic Heavy Penetrometer (DPH). Ann. Warsaw Univ. Of Life Sci. – SGGW, Land Reclam. 44 (3), 211-223 (2015). DOI: https://doi.org/10.1515/sggw-2015-0026.
  • [13] A. Patel, Geotechnical Investigations and Improvement of Ground Conditions. Woodhead Publishing Series in Civil and Structural Engineering, 2019, Oxford, UK.
  • [14] J. Sękowski, Grunty antropogeniczne jako podłoże budowli. Prace Naukowe Politechniki Warszawskiej, Inżynieria Środowiska 54, 119-128 (2007).
  • [15] K.M. Skarżyńska, Reuse of coal mining wastes in civil engineering – part 1: Properties of minestone. Waste Management 15 (1), 3-42 (1995).
  • [16] G. Żarżojus, K. Dundulis, Problems of correlation between dynamic probing tst (DPSH) and cone penetration test (CPT) for cohesive soils o Lithunia. The Baltic Journal of Road and Bridge Engineering 5 (2), 69-75 (2010).
  • [17] T. Lunne, J.J.M. Powell, P.K. Robertson, Cone Penetration Testing in Geotechnical Practice. Soil Mechanics and Foundation Engineering 46 (6), 1997. DOI: https://doi.org/10.1007/s11204-010-9072-x.
  • [18] EN 1997-2:2009/AC:2010P - Eurocode 7: Geotechnical Design – Part 2: Ground Investigation and Testing.
  • [19] P. Filipowcz, M. Borys, Comparative analysis of the geotechnical properties of coal mining waste from Lublin Coal Basin and from other basins. J. Water Land Dev. 11, 117-130 (2007). DOI: https://doi.org/10.2478/v10025-008-00105.
  • [20] S. Stojadinović, M. Žikić, R. Pantović, I. Svrkota, D. Petrović, High slope waste dumps – a proven possibility, Acta Montanistica Slovaca 18 (1), 40-51 (2013).
  • [21] M. Marcisz, Ł. Gawor, K. Probierz, Valorization of coal mining waste dumps from the mines of Jastrzębska Spółka Węglowa SA for the needs of recovery of coal and further reclamation and management. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 34 (4), 97-114 (2018).
  • [22] D. Sybilski, C. Kraszewski, Ocena i badania wybranych odpadów przemysłowych do wykorzystania w konstrukcjach drogowych. Instytut Badawczy Dróg i Mostów, 2004, Warszawa.
  • [23] J. Adamczyk, Basic Goetechnical Properties of Mining and Processing Waste – a State of The Art Analysis. AGH Journal of Mining and Geoengineering 36 (2), 31-41 (2012).
  • [24] G. Blight, Geotechnical Engineerng for Mine Waste Storage Facilities, CRC Press, Taylor & Francis Group, 2010, London.
  • [25] K.R. Redd, Technical challenges to in-situ remediation of polluted sites. Geotechnical and Geological Engineering Journal 28 (3), 211-221 (2010).
  • [26] R.B. Finkelman, Potential health impact of burning coal beds and waste banks. Int. J. Coal Geol. 59, 19-24 (2004). DOI: https://doi.org/10. 1016/j.coal.2003.11.002.
  • [27] M.J. Fabiańska, J. Ciesielczuk, A. Nadudvari, M. Misz-Kennan, A. Kowalski, Ł. Kruszewski, Environmental Influence of gaseous emissions from self-heating coal waste dumps in Silesia, Poland, Environ. Geochem. Health 41, 575-601 (2019). DOI: https://doi.org/10.1007/s10653-018-0153-5.
  • [28] R. Jendruś, Geotechnical and physical aspects of eliminating seats of fire on coal waste dumps. Oficyna Wydawnicza PIAP, 2016 Warsaw, Poland.
  • [29] Z. Różański, Management of mining waste and the areas of its storage – environmental aspects. Mineral Resources Management 35 (3), 119-142 (2019). DOI: https://doi.org/10.2445/gsm.2019.128525.
  • [30] E.H. Rybicka, Environmental Impact of The Mining Industry in Poland. Springer, 1995, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-79316-5_16.
  • [31] Z. Bian, J. Dong, S. Lei, H. Leng, S. Mu, H. Wang, The Impact of Disposal and Treatment of Coal Mining Waste on Environment and Farmland. Environmental Geology 58 (3), 625-634 (2009).
  • [32] I.A. Håkansson, Method for characterizing the state of compactness of the plough layer. Soil Till Res. 16 (1-2), 105-120 (1990). DOI: https://doi.org/10.1016/0167-1987(90)90024-8.
  • [33] ISO 2720 (Part 14):1983. Methods of test for soils: Determination of density Index (Relative Density) of Cohesionless Soil (First revision). Reaffirmed – Dec, (2015).
  • [34] B. Roy, S.K. Bhalla, Role of geotechnical properties of soil on civil engineering structures. Resources and Environment 7 (4), 103-109 (2017). DOI: https://doi.org/10.5923/j.re.20170704.03.
  • [35] M.D. Braja, Geotechnical Engineering Handbook. Edited by M. Das Braja – J.Ross Publishing Inc. 2011, USA.
  • [36] M.M. Shahien, A. Farouk, Correlation between compressibility of gravely deposits and dynamic cone penetration tests. Proceedings of the 3rd International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, 28-30 June, Near East University, Nicosia, North Cyprus, 617-625 (2012).
  • [37] J. Diaz-Curiel, S. Rueda-Quintero, B. Biosca, G. Doñate-Matilla, Advance in The Penetrometer Test Formulation to Estimate Allowable Pressure in Granular Soils. Acta Geotechnica 12, 1119-1127 (2017).
  • [38] M. Jamiolkowski, V.N. Ghionna, R. Lancelotta, E. Pasqualine, New correlations of penetration tests for design practice. In: Proceedings of the First International Symposium on Penetration Testing (ISOPT-1). Orlando, FL, USA, 20-24 March, 263-296 (1988).
  • [39] F.H. Kulhavy, P.W. Mayne, Manual on estimating soil properties for foundation design. Cornel University Ithaca, 1990, New York, USA.
  • [40] C.J. MacRobert, Intepreting DPSH penetration values in sand soils. J. S. Afr. Inst. Civ. Eng. 59 (3), 11-15 (2017). DOI: https://doi.org/10.17159/2309-8775/2017/v59n3a2.
  • [41] A. Mahler, F. Szendefy, Estimation of CPT resistance based on DPH results. Civili Engineering 53 (2), 101-106 (2009). DOI: https://doi.org/10.3311/pp.ci.2009-2.06.
  • [42] H. Abuel-Naga, A. Bouazza, M. Holtrigter, On Use of Dynamic Probing in Sandy Soils. International Association of Lowland Technology (IALT) 13 (2), 40-50 (2011).
  • [43] G. D’Amato Avanzi, Y. Galanti, R. Gianeecchini, S. Duchi, D. Lo Presti, D. Marchetti, DP Test in Geotechnical Characterization of Shallow Landslides Source Area: Results And Perspectives in: C. Margottini, P. Canuti, K. Sasa (Eds.), Landslide Science and Practice, Springer Verlag Heidelberg, Germany, 249-255 (2013).
  • [44] G. Stefanoff, G. Sanglerat, U. Bergdhal, K.J. Melzer, Dynamic Probing (DP): International Reference Test Procedure. In De Ruiter (ed) Proceedings of ISOPT-I, Balkema, Rotterdam, The Netherlands 1, 53-70 (1998).
  • [45] M. Issam, A.K. Gabr, H.A. Mehdi, M.G. Arab, Correlating physical and mechanical properties of soil with dynamic penetration tests. Journal of Al.-Azhar University of Engineering Sector 17 (63), 512-527 (2022).
  • [46] ISO 22476-2:2005/Amd 1:2011. Geotechnical investigation and testing-field testing – Part 2: dynamic probing, (2011).
  • [47] C.J. Mac Robert, D. Kalumba, P. Beales, Empirical equivalence between SPT and DPSH penetration ResistanceValues. Proceedings of the 15th African Regional Conf. on Soil Mechanics and Geotechnical Engineering, C. Quadros nd S.W. Jacobs (Eds), 565-570 (2011). DOI: https://doi.org/10.3233/97-1-60750-778-9-565.
  • [48] B. Czado, J.S. Pietras, Comparison of The Cone Penetration Resistance Obtained in Static and Dynamic Field Tests. AGH Journal of Mining and Geoengineering 36 (1), 97-105 (2012).
  • [49] G. Stenzel, K.J. Melzer, Soil Investigation by penetrating testing according to DIN 4094. Tiefabu 20, 155-160 (1978).
  • [50] G. Spagnoli, An empirical Correlation between different dynamic penetrometers. European Journal of Government and Economics 13, (2008).
  • [51] K.J. Witt, Grundbau-Taschenbuch. Teil 1: Geotechnische Grundlagen. Ernst& Sohn, 2008, Berlin.
  • [52] K. Zilch, C.J. Diederichs, R. Katzenbach, K.J. Beckmann, Handbuch fuer Bauingenieure. Technik, Organisation und Wirtschaftlichkeit. 2012, Springer-Verlag, Heidelberg.
  • [53] PN-B-04452:2002.
  • [54] I. Bagińska, Ocena stopnia zagęszczenia gruntu sondą dynamiczną DPH i sondą statyczną CPTU. Przegląd Komunikacyjny 3, 6-10 (2015).
  • [55] ISO 17892-12:2018. Geotechnical investigation and testing – Laboratory testing of soil – Part 12: Determination of liquid and plastic limits, (2018).
  • [56] ISO 14688-2:2018-5. Geotechnical investigation and testing – Identification and classification of soil – Part 2: Principles for a classification, (2018).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9285dfb4-36a2-41f9-bbc0-b16c102bc712
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.