PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Substrate inhibition in lipase-catalysed transesterification of mandelic acid with vinyl acetate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Kinetic resolution of (R)- and (S)-mandelic acid by its transesterification with vinyl acetate catalysed by Burholderia cepacia lipase has been studied. The influence of the initial substrate concentration on the kinetics of process has been investigated. A modified ping-pong bi-bi model of enzymatic transesterification of (S)-mandelic acid including substrate inhibition has been developed. The values of kinetic parameters of the model have been estimated. We have shown that the inhibition effect revealed over a certain threshold limit value of the initial concentration of substrate.
Rocznik
Strony
539--546
Opis fizyczny
Bibliogr. 17 poz., tab., rys.
Twórcy
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Department of Biotechnology and Bioprocess Engineering, Waryńskiego 1, 00-645 Warszawa, Poland
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Department of Biotechnology and Bioprocess Engineering, Waryńskiego 1, 00-645 Warszawa, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Department of Biotechnology and Bioprocess Engineering, Waryńskiego 1, 00-645 Warszawa, Poland
Bibliografia
  • 1. Campbell R.F., Fitzpatric K., Inghardt T., Karlsson O., Nilsson K., Reilly J.E., Yet L., 2003. Enzymatic resolution of substituted mandelic acids. Tetrahedron Lett., 44, 5477-5481. DOI: 10.1016/S0040-4039(03)01270-X.
  • 2. Dąbkowska K., Szewczyk K.W., 2007. Mathematical modelling of enzymatic transesterification of mandelic acid with vinyl acetate. Chem. Proc. Eng., 28, 795-802.
  • 3. Dąbkowska K., Szewczyk K.W., 2009. Influence of temperature on the activity and enantioselectivity of Burkholderia cepacia lipase in the kinetic resolution of mandelic acid enantiomers. Biochem. Eng. J., 46, 147-153. DOI: 10.1016/j.bej.2009.04.023.
  • 4. Ghanem A., Aboul-Enein H.Y., 2005. Application of lipases in kinetic resolution of racemates. Chirality, 17, 1-15. DOI: 10.1002/chir.20089.
  • 5. Gröger H., 2001. Enzymatic Routes to Enantiomerically pure aromatic .-hydroxy carboxylic acids: A further example for the diversity of biocatalysis. Adv. Synth. Catal., 343, 547-558. DOI: 10.1002/16154169(200108)343:6/7<547::AID-ADSC547>3.0.CO;2-A.
  • 6. Kibara K., Sakai K., Hashimoto Y., Nohira H., Saigo K., 1996. Design of resolving reagents: p-substituted mandelic acid as resolving reagents for 1-arylalkylamines. Tetrahedron: Asymmetry, 7, 1539-1542. DOI: 10.1016/0957-4166(96)00175-9.
  • 7. Maier N.M., Franco P., Lindner W., 2001. Separation of enantiomers: needs, challenges, perspectives.
  • J. Chromatogr. A, 906, 3-33. DOI: 10.1016/S0021-9673(00)00532-X.
  • 8. Palomo M., Fernandez-Lorente G., Mateo C., Ortiz C., Guisan J.M., Fernandez-Lafuente R., 2002. Modulation of the enantioselectivity of lipases via controlled immobilization and medium engineering: hydrolytic resolution of mandelic acid esters. Enz. Microb. Technol., 31, 775-783. DOI: 10.1016/S0141-0229(02)00169-2.
  • 9. Pilarek M., Szewczyk K.W., 2007. Kinetic model of 1,3-specific triacylglycerols alcoholysis catalyzed by lipases. J. Biotechnol., 127, 736-744. DOI: 10.1016/j.jbiotec.2006.08.012.
  • 10. Segel I.H., 1993. Enzyme kinetic. Behavior and analysis of rapid equilibrium and steady-state enzyme systems. Wiley, New York, 827-828.
  • 11. Sharma D., Sharma B., Shukla A.K., 2011. Biotechnological approach of microbial lipase: A review. Biotechnology, 10, 23-40. DOI: 10.3923/biotech.2011.23.40.
  • 12. Stinson C.S., 2001. Chiral pharmaceuticals. Chem. Eng. News, 79, 79-97. DOI: 10.1021/cen-v079n040.p079.
  • 13. Surivet J.-P., Vatele J.-M., 1998. First total synthesis of (-)-8-epi-9-deoxygoniopypyrone. Tetrahedron Lett., 39, 9681-9682. DOI: 10.1016/S0040-4039(98)02269-2.
  • 14. Szewczyk K.W., Pilarek M., Wrona M., 2001. Enzymatic propanolysis of triacetin. Inż. Chem. Proc., 22, 13511356.
  • 15. Terreni M., Pagani G., Ubiali D., Fernández-Lafuente R., Mateo C., Guisán J.M., 2001. Modulation of penicillin acylase properties via immobilization techniques: one-pot chemoenzymatic synthesis of caphamandole from cephalosporin C. Bioorg. Med. Chem. Lett., 11, 2429-2432. DOI: 10.1016/S0960-894X(01)00463-2.
  • 16. Queiroz N., Nascimento M. G., 2002. Pseudomonas sp. lipase immobilized in polymers versus the use of free enzyme in the resolution of (R,S)-methyl mandelate. Tetrahedron Lett., 43, 5225-5227. DOI: 10.1016/S00404039(02)01057-2.
  • 17. Yadav G.D., Sivakumar P., 2004. Enzyme-catalysed optical resolution of mandelic acid via (R,S)-methyl mandelate in non-aqueous media. Biochem. Eng. J., 19, 101-107. DOI: 10.1016/j.bej.2003.12.004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9283582a-020a-4295-8795-4dfd0bf2f6bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.