PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of global solar irradiance on sloped surfaces in climatic conditions of Kraków

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents calculations of global solar irradiance on inclined surfaces of any orientation in the hourly time step. For computational purposes there were used the data from typical meteorological years (TMY) available in a form of text files on the website of the Ministry of Infrastructure and Development. Hourly solar global horizontal irradiance from measurements from the file for Kraków was used as input for five anisotropic models (Hay, Muneer, Reindl, Perez and Perez according to the new PN-EN ISO 52010-1 standard). Direct normal and diffuse horizontal and then global irradiances were calculated. To illustrate the effects of using different models, for the exemplary residential building, monthly solar heat gains and heating demand was determined according to the monthly method of PN-EN ISO 13790. In comparison to the solar data from the TMY, an average decrease in the value of solar gains amounted 37%, what resulted in an increase in the calculated heat demand of the building by 10%. This is very important since this change takes place without any modernisation works.
Rocznik
Strony
505--514
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
  • AGH University of Science and Technology, Poland
Bibliografia
  • 1. Basińska, M., Ratajczak, K. and Tomczyk, J. (2018). Energy performance for residential building – comparison between theoretical method and real measurements. In: 10th Conference on Interdisciplinary Problems in Environmental Protection and Engineering EKO-DOK 2018. [online], E3S Web of Conferences 44, pp. 1-8. Available at: https://www.e3s-conferences.org/articles/e3sconf/abs/2018/19/contents/contents.html [Accessed 2 May 2019].
  • 2. Cyrankowski, M., Wilkowski, J., Górski, J. and Chludzińska, D. (2014). The analysis of the energy demand for heating and cooling of the house built on the basis of the modernised Canadian wood-frame construction. Annals of Warsaw University of Life Sciences – SGGW, Forestry and Wood Technology, 88, pp. 42-45.
  • 3. Firląg, S. and Piasecki, M. (2018). NZEB Renovation Definition in a Heating Dominated Climate: Case Study of Poland. Applied Scences, 8(9).
  • 4. Frydrychowicz-Jastrzębska, G. and Bugała, A. (2015). Modeling the Distribution of Solar Radiation on a Two-Axis Tracking Plane for Photovoltaic Conversion. Energies, 8(2), pp. 1025-1041.
  • 5. Grudzińska, M. (2016). Climatic Zones in Poland and the Demand for Heating in a Typical Residential Building. In: SBE16 Hamburg, Strategies, Stakeholders, Success factors. [online] ZEBAU – Centre for Energy, Construction, Architecture and the Environment GmbH, pp. 228-237. Available at: https://publikationen.bibliothek.kit.edu/1000051699 [Accessed 2 May 2019].
  • 6. Grudzińska, M. (2018). Validation of a dynamic simulation program according to EN ISO 15265. In: SOLINA 2018 – VII Conference SOLINA Sustainable Developmen: Architecture – Building Construction – Environmental Engineering and Protection Innovative Energy-Efficient Technologies – Utilization of Renewable Energy Sources. Available at: https://www.e3s-conferences.org/articles/e3sconf/abs/2018/24/contents/contents.html [Accessed 2 May 2019].
  • 7. Grudzińska, M. and Jakusik, E. (2015). The efficiency of a typical meteorological year and actual climatic data in the analysis of energy demand in buildings. Building Services Engineering Research and Technology, 36(6), pp. 658-669.
  • 8. Grudzińska, M. and Jakusik, E. (2017). Energy performance of buildings in Poland on the basis of different climatic data. Indoor and Built Environment, 26(4), pp. 551-566.
  • 9. Hay, J.E. (1979). Calculation of monthly mean solar radiation for horizontal and inclined surfaces. Solar Energy, 23(4), pp. 301-307.
  • 10. Jędrzejuk, H. and Dybiński, O. (2015). The influence of a heating system control program and thermal mass of external walls on the internal comfort in the Polish climate. Energy Procedia, 78, pp. 1087-1092.
  • 11. Lis, P. (2018). Estimated potential for energy savings in heating residential buildings in Poland. In: SOLINA 2018 – VII Conference SOLINA Sustainable Developmen: Architecture - Building Construction - Environmental Engineering and Protection Innovative Energy-Efficient Technologies – Utilization of Renewable Energy Sources. Available at: https://www.e3s-conferences.org/articles/e3sconf/abs/2018/24/contents/contents.html [Accessed 2 May 2019].
  • 12. Mazurek, G. (2014). Estimation of Solar Irradiation on Inclined Surface Based on Web Databases. International Journal of Electronics and Telecommunications, 60(4), pp. 315-320.
  • 13. Michalak, P. (2018). Calculation of the Global Solar Irradiance on Arbitrarily Oriented Tilted Surfaces According to the New PN-EN ISO 52010-1: 2017. District Heating, Heating, Ventilation [in Polish], 49(7), pp. 280-287.
  • 14. MIiR.gov.pl (2019). Typical Meteorological Years. The Ministry of Infrastructure and Development Official Website. [online] Available at: https://www.gov.pl/web/inwestycje-rozwoj/dane-do-obliczen-energetycznych-budynkow [Accessed 2 May 2019].
  • 15. Muneer, T. and Satuja, G.S. (1989). Correlation between daily diffuse and global irradiation for the UK. Building Service Engineering, 6(3), pp. 103-108.
  • 16. Nelken, K. and Zmudzka, E. (2016). TMY versus multi-year time series of meteorological conditions for the characterization of central Poland’s suitability for photovoltaics. Meteorologische Zeitschrift, 26(1), pp. 21-31.
  • 17. Panek, A. and Kwiatkowski, J. (2007). Method for calculating heating demand and energy requirements [in Polish]. Energia i Budynek, 7, pp. 9-13. Available at: http://www.buildup.eu/sites/default/files/content/A.D.Panek%2CJ.Kwiatkowski.pdf [Accessed 2 May 2019].
  • 18. Perez, R., Ineichen, P., Seals, R., Michalsky, J. and Steward R. (1990). Modeling daylight availability and irradiance components from direct and global irradiance. Solar Energy, 44(5), pp. 271-289.
  • 19. Polish Committee for Standardization, (2009). PN-EN ISO 13790:2009. Energy performance of buildings. Calculation of energy use for space heating and cooling. Warszawa.
  • 20. Reindl, D.T., Beckman, W.A. and Duffie, J.A. (1990). Evaluation of Hourly Tilted Surface Radiation Models. Solar Energy, 45, pp. 9-17.
  • 21. The Polish Committee for Standardization. (2017). PN-EN ISO 52010-1:2017. Energy performance of buildings - External climatic conditions – Part 1: Conversion of climatic data for energy calculations. Warszawa.
  • 22. Wierciński, Z. and Skotnicka-Siepsiak, A. (2012). Energy and exergy flow balances for traditional and passive detached houses. Technical Sciences, 15(1), pp. 15-33.
  • 23. Włodarczyk, D. and Nowak H. (2009). Statistical analysis of solar radiation models onto inclined planes for climatic conditions of Lower Silesia in Poland. Archives of Civil and Mechanical Engineering, 9(2), pp. 127-144.
  • 24. Wojdyga, K. (2008). An influence of weather conditions on heat demand in district heating systems. Energy and Buildings, 40(11), pp. 2009-2014.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-927b40af-e79a-419d-a024-ebd04c7462dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.