PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geochemical and multivariate statistical study to assess the salinisation origin of the Remila plain groundwater, Khenchela Algeria

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aquifer system of the Remila plain (Khenchela, Algeria), covering 250 km2, is one of the semiarid regions where groundwater is heavily exploited for urban supply and irrigation. An integrated hydrochemical and statistical analysis was performed on 70 water samples to identify the main processes and the origin of salinisation of our waters. Chemical analyses indicate salinity values (TDS) ranging from 568 to 1586 mg·dm-3 with an average of 869 mg·dm-3, with sulphate being the dominant ions, especially in the north and northeastern parts of the region. The identified chemical facies are SO4-Cl-Ca in the northeastern part, SO4-Cl-Ca-Mg present in most waters, and HCO3-Ca-Mg in the southeastern part. We applied the statistical approach to group the waters into three categories using Principal Component Analysis (PCA) and Hierarchical Clustering Analysis (HCA); 1) saline waters (23%) (TDS > 1000 mg·dm-3 and SO42-dominance), 2) moderately saline waters (51%) with HCO3- dominance, 3) moderately saline waters (26%) with a mixed facies. The binary ion diagrams used suggest that the main hydrochemical processes are: evaporites dissolution and/or precipitation, accompanied by an exchange and/or reverse exchange of ions. Additionally, another process was detected in the northeastern part of the area; the saline intrusion of Sabkha waters, favoured by intensive aquifer exploitation.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
145--155
Opis fizyczny
Bibliogr. 54 poz., rys., tab., wykr.
Twórcy
  • University of Abbes Laghrour Khenchela, Faculty of Nature and Life Sciences, Department of Agricultural Sciences, Route de Batna; Boîte Postale 1252 Khenchela, 40004 Khenchela, Algeria
  • University of Mohamed Khider, Department of Agricultural Sciences, Biskra, Algeria
  • University of Abbes Laghrour Khenchela, Faculty of Nature and Life Sciences, Department of Biology, Algeria
Bibliografia
  • AHOUSSI E.K., SORO N., KOUASSI A.M., ZADE S.P. 2010. Application des méthodes d’analyses statistiques multivariées à l’étude de l’origine des métaux lourds (Cu 2+ , Mn 2+ , Zn 2+ et Pb2+ ) dans les eaux des nappes phréatiques de la ville d’Abidjan [Application of multivariate statistical analysis methods to the study of the origin of heavy metals (Cu 2+ , Mn2+ , Zn 2+ and Pb2+ ) in groundwater in the city of Abidjan]. The International Journal of Biological and Chemical Sciences. Vol. 4(5) p. 1753–1765. DOI 10.4314/ijbcs.v4i5.65537.
  • AOUIDANE L. 2017. Origines de la salinisation des eaux et des sols d’une zone à climat semi-aride: Cas de Remila (W. Khenchela) [Origin water and soil salinization in a semi-arid zone: Case of Remila (W. Khenchela)]. PhD Thesis. Biskra. Université Mohamed Khider Biskra pp. 215.
  • AOUIDANE L., BELHAMRA M. 2017. Hydrogeochemical processes in the Plio-quaternary Remila aquifer (Khenchela, Algeria). Journal of African Earth Sciences. Vol. 130 p. 38–47. DOI 10.1016/j.jafrearsci.2017.03.010.
  • APPELO C.A.J. 1994. Cation and proton exchange, pH variations, and carbonate reactions in a freshening aquifer. Water Resources Research. Vol. 30(10) p. 2793–2805.
  • ATTEIA O. 2015. Chimie et pollution des eaux souterraines [Chemistry and groundwater pollution]. Paris. Lavoisier. ISBN 978-2-7430-2009-5 pp. 448.
  • AYADI Y., MOKADEM N., BESSER H., REDHAOUNIA B., KHELIFI F., HARABI S., NASRI T., HAMED Y. 2018. Statistical and geochemical assessment of groundwater quality in Teboursouk area (Northwestern Tunisian Atlas). Environmental Earth Sciences. Vol. 77(9), 349. DOI 10.1007/s12665-018-7523-2.
  • BENCHOKROUN T. 2008. Ressources en eau et notions de base [Water resources and basic concepts]. Revue A.N.A.F.I.D.E. No. Spec. 140 p. 19–25.
  • BOUZOURRA H., BOUHLILA R., ELANGO L., SLAMA F., OUSLATI N. 2015. Characterization of mechanisms and processes of groundwater salinization in irrigated coastal area using statistics, GIS, and hydrogeochemical investigations. Environmental Science and Pollution Research. Vol. 22(4) p. 2643–2660. DOI 10.1007/s11356-014-3428-0.
  • BROVELLI A., CARRANZA-DIAZ O., ROSSI L., BARRY D.A. 2011. Design methodology accounting for the effects of porous medium heterogeneity on hydraulic residence time and biodegradation in horizontal subsurface flow constructed wetlands. Ecological Engineering. Vol. 37(5) p. 758–770.
  • CGG 1969. Prospection Géophysique de la plaine de Remila (Khenchela). Coupes transversales [Geophysical prospecting of the plain of Remila (Khenchela). Cross sections] Compagne Générale of Géologie. Direction Department of Public Works of Batna pp. 35.
  • CPH 1977. Proposition de réalisation d’étude et projets d’aménagement hydro agricole de la plaine de Remila [Proposal for carrying out a study and hydro-agricultural development projects of the Remila plain]. Rapport de Consortium Projectum-HIDROESB. Rio de Janeiro pp. 100.
  • CAPACCIONIA B., DIDERO M., PALETTA C., DIDERO L. 2005. Saline intrusion and refreshening in a multilayer coastal aquifer in the Catania Plain (Sicily, Southern Italy): dynamics of degradation processes according to the hydrochemical characteristics of groundwaters. Journal of Hydrology. Vol. 307(1–4) p. 1–16. DOI 10.1016/j.jhydrol.2004.08.037.
  • CASSARDO C., JONES J.A.A. 2011. Managing water in a changing world. Water. Vol. 3(2) p. 618–628. DOI 10.3390/w3020618.
  • DHWK 1984. Master plan for planning and development, production and layout services. Department of Hydraulics of the Wilaya of Khenchela, Algeria pp. 27.
  • FARID I., TRABELSI R., ZOUARI K., ABID K., AYACHI M. 2013. Hydrogeochemical processes affecting groundwater in an irrigated land in central Tunisia. Environmental Earth Sciences. Vol. 68 p. 1215–1231. DOI 10.1007/s12665-012-1788-7.
  • FRAPE S.K., FRITZ P., MCNUTT R.H. 1984. Water-rock interaction and chemistry of groundwaters from the Canadian Shield. Geochimica et Cosmochimiva Acta. Vol. 48(8) p. 1617–1627. DOI 10.1016/0016-7037(84)90331-4.
  • GALVAO A.F., GABRIEL M.R., WALTER S.E., WANG L. 2013. Tests for skewness and kurtosis in the one-way error component model. Journal of Multivariate Analysis. Vol. 122 p. 35–52. DOI 10.1016/j.jmva.2013.07.002.
  • GHABAYEN S.M.S., MCKEE M., KEMBLOWSKI M. 2006. Ionic and isotopic ratios for identification of salinity sources and missing data in the Gaza aquifer. Journal of Hydrology. Vol. 318 p. 360–373. DOI 10.1016/j.jhydrol.2005.06.041.
  • GHESQUIÈRE O., WALTER J., CHESNAUX R., ROULEAU A. 2015. Scenarios of groundwater chemical evolution in a region of the Canadian Shield based on multivariate statistical analysis. Journal of Hydrology: Regional Studies. Vol. 4 p. 246–266. DOI 10.1016/j.ejrh.2015.06.004.
  • GIBBS R.J. 1970. Mechanisms controlling world water chemistry. Science, New Series. Vol. 170(3962) p. 1088–1090.
  • GIL-MÁRQUEZ J.M., BARBERÁ J.A., ANDREO B., MUDARRA M. 2017. Geochemical evolution of groundwater in an evaporite karst system: Brujuelo area (Jaén, Spain). Procedia Earth and Planetary Science. Vol. 17 p. 336–339. DOI 10.1016/j.proeps.2016.12.085.
  • HAMZAOUI-AZAZA F., TLILI-ZRELLI B., BOUHLILA R., GUEDDARI M. 2012. An integrated statistical methods and modeling minerals-water interaction to identifying hydrochemical processes in groundwater in southern Tunisia. Chemical Speciation and Bioavailability. Vol. 25(3) p. 165–178. DOI 10.3184/095422913X13785679075430.
  • HASSEN I., HAMZAOUI-AZAZA F., BOUHLILA R. 2016. Application of multivariate statistical analysis and hydrochemical and isotopic investigations for evaluation of groundwater quality and its suitability for drinking and agriculture purposes: Case of Oum Ali-Thelepte aquifer, central Tunisia. Environmental Monitoring and Assessment. Vol. 188(3), 135. DOI 10.1007/s10661-016-5124-7.
  • HOSSEINI S.Z., KAPPAS M., BODAGHABADI M.B., CHAHOUKI M.A.Z., KHOJASTEH E.R. 2014. Comparison of different geostatistical methods for soil mapping using remote sensing and environmental variables in Poshtkouh Rangelands, Iran. Polish Journal of Environmental Studies. Vol. 23(3) p. 737–751.
  • KERRY R., OLIVER M.A. 2007. Determining the effect of asymmetric data on the variogram. Underlying asymmetry. Computers and Geosciences. Vol. 33 p. 1212–1232. DOI 10.1016/j.cageo.2007.05.009.
  • KHARROUBI A., TLAHIGUE F., AGOUBI B., AZRI C., BOURI S. 2012. Hydrochemical and statistical studies of the groundwater salinization in Mediterranean arid zones: Case of the Jerba coastal aquifer in southeast Tunisia. Environmental Earth Sciences. Vol. 67 p. 2089–2100. DOI 10.1007/s12665-012-1648-5.
  • KRAIEM Z., ZOUARI K., BENCHEIKH N., AGOUN A., ABIDI B. 2015. Processus de minéralisation de la nappe du Plio-Quaternaire dans la plaine de Segui-Zograta (Sud-Ouest tunisien) [Mineralization processes of the Plio-Quaternary aquifer in the Segui-Zograta plain (southwest Tunisia)]. Hydrological Sciences Journal. Vol. 60(3) p. 534–548. DOI 10.1080/02626667.2013.877587.
  • LAFFITTE R. 1939. Étude géologique de l’Aurès [Geological study of Aurès]. Bulletin of the Geological Survey of Algeria. 1st series pp. 484.
  • MASOUD A.A., EL-HORINY M.M., ATWIA M.G., GEMAIL K.S., KOIKE K. 2018. Assessment of groundwater and soil quality degradation using multivariate and geostatistical analyses, Dakhla Oasis, Egypt. Journal of African Earth Sciences. Vol. 142 p. 64–81. DOI 10.1016/j.jafrearsci.2018.03.009.
  • OLIVER M.A. 2010. Geostatistical applications for precision agriculture. Dordrecht–Heidelberg–London–New York. Springer. ISBN 978-90-481-9132-1 pp. 337. DOI 10.1007/978-90-481-9133-8.
  • OLIVER M.A., LOVELAND P.J., FROGBROOK Z.L., WEBSTER R., MCGRATH S.P. 2002. Statistical and geostatistical analysis of the national soil inventory of England and Wales [CD ROM]. MAFF project SPO124. National Soil Resources Institute, Cranfield University, UK.
  • PAZAND K., HEZARKHANI A., GHANBARI Y., AGHAVALI N. 2012. Geochemical and quality assessment of groundwater of Marand Basin, East Azarbaijan Province, northwestern Iran. Environmental Earth Sciences. Vol. 67 p. 1131–1143. DOI 10.1007/s12665-012-1557-7.
  • PEJMAN A.H., NABI BIDHENDI G.R., KARBASSI A.R., MEHRDADI N., ESMAEILI BIDHENDI M. 2009. Evaluation of spatial and seasonal variations in surface water quality using multivariate statistical techniques. International Journal of Environmental Science and Technology. Vol. 6(3) p. 467–476.
  • PIPER A.M. 1944. A graphic procedure in the geochemical interpretation of water analyses. Transactions of the American Geophysical Union. Vol. 25 p. 914–923. DOI 10.1029/TR025i006p00914.
  • PISINARAS V., TSIHRINTZIS V.A., PETALAS C., OUZOUNIS K. 2010. Soil salinization in the agricultural lands of Rhodope District, northeastern Greece. Environmental Monitoring and Assessment. Vol. 166 p. 79–94.
  • RINA K., SINGH C.K., DATTA P.S., SINGH N., MUKHERJEE S. 2013. Geochemical modelling, ionic ratio and GIS based mapping of groundwater salinity and assessment of governing processes in Northern Gujarat, India. Environmental Earth Sciences. Vol. 69 p. 2377–2391. DOI 10.1007/s12665-012-2067-3.
  • RODIER J., LEGUBE B., MERLET N. 2016. L’analyse de l’eau [Water analysis]. 10th ed. fully. Paris. Dunod pp. 867.
  • SANCHEZ-MARTOS F., PULIDO-BOSCH A., MOLINA-SANCHEZ L., VALLEJOS-IZQUIERDO A. 2002. Identification of the origin of salinization in groundwater using minor ions (Lower Andarax, Southeast Spain). The Science of the Total Environment. Vol. 297(1–3) p. 43–58. DOI 10.1016/S0048-9697(01)01011-7.
  • SCHOELLER H. 1965. Qualitative evaluation of groundwater resources. In: Methods and techniques of ground-water investigations and development. New York. UNESCO p. 54–83.
  • SINGH C.K., KUMAR A., SHASHTRI S., KUMAR A., KUMAR P., MALLICK J. 2017. Multivariate statistical analysis and geochemical modeling for geochemical assessment of groundwater of Delhi, India. Journal of Geochemical Exploration. Vol. 175 p. 59–71. DOI 10.1016/j.gexplo.2017.01.001.
  • SINGH K., HUNDAL H.S., SINGH D. 2011. Geochemistry and assessment of hydrogeochemical processes in groundwater in the southern part of Bathinda district of Punjab, northwest India. Environmental Earth Sciences. Vol. 64 p. 1823–1833. DOI 10.1007/s12665-011-0989-9.
  • SRINIVASAMOORTHY K., GOPINATH M., CHIDAMBARAM S., VASANTHAVIGAR M., SARMA V.S. 2014. Hydrochemical characterization and quality appraisal of groundwater from Pungar sub basin, Tamilnadu, India. Journal of King Saud University – Science. Vol. 26(1) p. 37–52. DOI 10.1016/j.jksus.2013.08.001.
  • SUDHEER K.M., RATNAKAR D., YADAGIRI G., SRINIVASA R.K. 2017. Principal component and multivariate statistical approach for evaluation of hydrochemical characterization of fluoride-rich groundwater of Shaslar Vagu watershed, Nalgonda District, India. Arabian Journal of Geosciences. Vol. 10. Iss. 4 p. 1–17. DOI 10.1007/s12517-017-2863-x.
  • TIJANI M.N. 2004. Evolution of saline waters and brines in the Benue-Trough, Nigeria. Applied Geochemistry. Vol. 19(9) p. 1355–1365. DOI 10.1016/j.apgeochem.2004.01.020.
  • TLILI-ZRELLI B., HAMZAOUI-AZAZA F., GUEDDARI M., BOUHLILA R. 2013. Geochemistry and quality assessment of groundwater using graphical and multivariate statistical methods. A case study: Grombalia phreatic aquifer (northeastern Tunisia). Arabian Journal of Geosciences. Vol. 6 p. 3545–3561. DOI 10.1007/s12517-012-0617-3.
  • VAN BREUKELEN B.M., APPELO C.A.J., OLSTHOORN T.N. 1998. Hydrogeochemical transport modeling of 24 years of Rhine water infiltration in the dunes of the Amsterdam Water Supply. Journal of Hydrology. Vol. 209(1–4) p. 281–296. DOI 10.1016/S0022-1694(98)00105-X.
  • VAROL S., DAVRAZ A. 2014. Assessment of geochemistry and hydrogeochemical processes in groundwater of the Tefenni plain (Burdur/Turkey). Environmental Earth Sciences. Vol. 71 p. 4657–4673.
  • VILA J.M. 1977. Notice explicative de la carte géologique, au 1/50.000, Touffana (feuille n° 202) [Explanatory note of the geological map, at 1/50,000, Touffana (sheet n° 202)]. Hydra, Algeria. Sonatrach pp. 6.
  • VISWANATH N.C., KUMAR P.G.D., AMMAD K.K. 2015. Statistical analysis of quality of water in various water shed for Kozhikode City, Kerala, India. Aquatic Procedia. Vol. 4 p. 1078–1085. DOI 10.1016/j.aqpro.2015.02.136.
  • WALTON W.C. 1965. Groundwater recharge and runoff in Illinois [online]. Illinois State Water Survey. Urbana. Report of Investigation. No. 4 pp. 48. [Access 10.06.2020]. Available at: https://www.isws.illinois.edu/pubdoc/RI/ISWSRI-48.pdf
  • YANG F., ZHANG G., YIN X., LIU Z. 2011. Field-scale spatial variation of saline-sodic soil and its relation with environmental factors in Western Songnen Plain of China. International Journal of Environmental Research and Public Health. Vol. 8 p. 374–387. DOI 10.3390/ijerph8020374.
  • YIDANA S.M., OPHORO D., BANOENG-YAKUBO B. 2008. A multivariate statistical analysis of surface water chemistry data the Ankobra Basin, Ghana. Journal of Environmental Management. Vol. 86 p. 80–87. DOI 10.1016/j.jenvman.2006.11.023.
  • ZEKTSER I.S., EVERETT L.G. (eds.) 2004. Resources of the word and their use. Paris. UNESCO. ISBN 92-9220-007-0 pp. 342.
  • ZEWDU S., SURYABHAGAVAN K.V., BALAKRISHNAN M. 2017. Geo-spatial approach for soil salinity mapping in Sego Irrigation Farm, South Ethiopia. Journal of the Saudi Society of Agricultural Sciences. Vol. 16 p. 16–24. DOI 10.1016/j.jssas.2014.12.003.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9279deae-959f-4a1b-9e0b-ca0096e9b415
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.