PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Implementation of contactless angular speed measurement based on photo sensor

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Zastosowanie bezkontaktowego czujnika optycznego do pomiaru prędkości obrotowej
Języki publikacji
EN
Abstrakty
EN
The main aim of this research is to propose a new and low cost angular speed measurement based on optical imaging technique. A photo sensor available in computer mouse is implemented as a contactless speed measurement transducer device. The photo mouse sensor output is used to convert the rotating speed of motor shaft, revolutions per minute (RPM), to linear speed. A software program written in C-sharp language is employed to determine the speed and display it in RPM. A motor with maximum rated speed of 2850 RPM is tested at different speeds. Performance comparison is founded by using speed tachometer as a reference measurement. The maximum and minimum percentage error found is 0.099% and 0.05% respectively. Results validated the effectiveness of the proposed technique and its potential applications in electric drives and automation.
PL
Zaproponowano tani system do pomiaru prędkoścoi katowej z wykorzystaniem czujnika optycznego. Jako czujnik wykorzystano typowy fotodetektor stosowany w myszkach komputerowych. Prograam oblicza ilość obrotów na minutę RPM. Na podstawie bada© eksperymentalnych określono dokładność pomiaru na 0.1%.
Rocznik
Strony
80--83
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Al-Hussein Bin Talal University, 71111, Ma’an, Jordan
autor
  • Palestine Technical University – Kadoorie (PTUK), Yafa Street, P.O.Box: 7,Tulkarm, Palestine
  • Al-Hussein Bin Talal University, 71111, Ma’an, Jordan
  • Al-Hussein Bin Talal University, 71111, Ma’an, Jordan
  • Al-Hussein Bin Talal University, 71111, Ma’an, Jordan
Bibliografia
  • [1] Boldea, I., & Nasar, S. A. Electric drives, (3rd ed.). (2016).Boca Raton, Florida, USA: CRC/Taylor and Francis.
  • [2] Salah, W. A., Albreem, M. A., Alsayid, B., Zneid. et al. Electric vehicle technology impacts on energy. International Journal of Power Electronics and Drive Systems, 10(1) (2019), 1- 9.
  • [3] Salah, W. A., Ishak, D., Zneid, B. et al. Implementation of PWM control strategy for torque ripples reduction in brushless DC motors. Electrical Engineering, 97(3) (2015), 239-250.
  • [4] Giebeler, C., Adelerhof, D., Kuiper, A. et al. G. Robust GMR sensors for angle detection and rotation speed sensing. Sensors and Actuators A: Physical, 91(1-2) (2001), 16-20.
  • [5] Lenssen, K.M., Adelerhof, D., Gassen, H. et al. Robust giant magnetoresistance sensors. Sensors and Actuators A: Physical, 85(1-3) (2000), 1-8.
  • [6] Treutler, C. Magnetic sensors for automotive applications. Sensors and Actuators A: Physical, 91(1-2) (2001), 2-6.
  • [7] Schewe, H., Schelter, W. Industrial applications of magnetoresistive sensors. Sensors and Actuators A: Physical, 59(1-3) (1997), 165-167.
  • [8] Burger, F., Besse, P.-A., Popovic, R. New single chip Hall sensor for three phases brushless motor control. Sensors and Actuators A: Physical, 81(1-3) (2000), 320-323.
  • [9] Bréda, Róbert, and Tomáš Patz. "Design of measurement chain to measure rpm of an aviation turbo jet engine." Przegląd Elektrotechniczny 89.3a (2013): 141-144.
  • [10] Kavanagh, R. C. Improved digital tachometer with reduced sensitivity to sensor nonideality. IEEE transactions on industrial electronics, 47(4) (2000), 890-897.
  • [11] Li, Y., Gu, F., Harris, G. et al. The measurement of instantaneous angular speed. Mechanical Systems and Signal Processing, 19(4) (2005), 786-805.
  • [12] Mei, T. C. Understanding Optical Mice. Avago Technologies. (2006).
  • [13] Salah, W. A., Zneid, B. A. Evolution of microcontroller-based remote monitoring system applications. International Journal of Electrical & Computer Engineering, 9(4) (2019), 2088-8708.
  • [14] Lu, S., Guo, J., He, Q. et al. A novel contactless angular resampling method for motor bearing fault diagnosis under variable speed. IEEE Transactions on Instrumentation and Measurement, 65(11) (2016), 2538-2550.
  • [15] Ng, T. W., Ang, K. The optical mouse for vibratory motion sensing. Sensors and Actuators A: Physical, 116(2) (2004), 205-208.
  • [16] Tresanchez, M., Pallejà, T., Teixidó, M. et al. Using the image acquisition capabilities of the optical mouse sensor to build an absolute rotary encoder. Sensors and Actuators A: Physical, 157(1) (2010), 161-167.
  • [17] Hengstler, S., Prashanth, D., Fong, S. et al. MeshEye: a hybrid-resolution smart camera mote for applications in distributed intelligent surveillance. Proceedings of 6th International Symposium on Information Processing in Sensor Networks, April 2007, Cambridge, MA, USA, (2007), 360–369.
  • [18] Cheng, P., Mustafa, M. S. M., Oelmann, B. Contactless rotor RPM measurement using laser mouse sensors. IEEE Transactions on Instrumentation and Measurement, 61(3) (2011), 740-748.
  • [19] Minoni, U., Signorini, A. Low-cost optical motion sensors: An experimental characterization. Sensors and Actuators A: Physical, 128(2) (2006), 402-408.
  • [20] Rehman, M., Abu Hassan, A. H., Abu Al Aish, D. A. Remote measurement of speed using fiber optic technique. Journal of Optoelectronics and Advanced Materials, 13(9-10) (2011), 1118-1121.
  • [21] Ng, T. W. The optical mouse as a two-dimensional displacement sensor. Sensors and Actuators A: Physical, 107(1) (2003), 21-25.
  • [22] Zhong, J., Zhong, S., Zhang, Q. wt al. Vision-based measurement system for instantaneous rotational speed monitoring using linearly varying-density fringe pattern. IEEE Transactions on Instrumentation and Measurement, 67(6), (2018), 1434-1445.
  • [23] Hargaš, L., Koniar, D., Hrianka, M. et al. Contactless parameters measurement of moving objects by virtual instrumentation. International Conference on Applied Electronics, 10-12 September 2013, Pilsen, Czech, (2013), 1-4.
  • [24] A. Technologies. Low Power Optical Mouse Sensor Data Sheet. https://www.avagotech.com, (2020).
  • [25] PixAr. Optical Gaming Navigation Chip. https://www.pixart.com/products-detail/4/PMW3389DM-T3QU, (2020).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-927788c1-3e3f-43ef-8463-49dafccf68be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.