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1. Introduction 
 

The most often discussed methods of transport are 
focused on commodity movement according to 
declared routes, using autonomous equipment 
(vehicles) characterised by the capacity and based 
on prepared schedule. The presented class of 
transport systems is called discrete transport system 
(DTS). We can find an example of DTS as a 
commodity transportation realised by trucks. The 
schedule of such DTS can be not very precise 
against to coaches, passenger airplanes or trains. Of 
course there are situations where the schedule ought 
to be very precise – productive systems working 
without storehouses – for example – with remote co-
operating parties [25], [13]. It is not trivial to model 
the transportation system properly for quality and 
efficiency estimation. The discrete transport system 
definition presented below includes all elements 
which have effect on service quality served by a 
supplier according to fixed strategy, real functional 
and reliability parameters of equipment. Such 
defined model combines both dependability and 
functional features. It allows to model discrete 
transport systems and to analyse the efficiency of 
the system if the number as well as quality of 
vehicles changes. We can also test how the system 
works if the number and location of recipients vary 
or different types of service strategy are available, 

or we notice failures [10], [15]. If we think about the 
transportation system as combination of equipment, 
infrastructure and human dispatcher we need to 
substitute the ordinary reliability models by 
functional and dependability models to check the 
system reaction for failures as well as to find the 
system efficiency changes after the dispatcher 
decisions [27], [6]. It is necessary for functional and 
dependability models to expand the definition of 
proper (reliable) state of system. The transportation 
system works correctly if tasks are realised 
according to the agreement – it means the 
commodity is transported on schedule, with 
declared volume. Failures of vehicles and 
infrastructure deteriorate the efficiency of the 
system, but if transportation tasks are realised 
according to the agreement we can say that the 
system works correctly. In the real transportation 
systems it is possible to substitute some functions by 
similar functions operating by various 
configurations, using different infrastructure 
features and redefined schedule [7], [16]. This way 
the system realises the task based on set of resources 
called functional configurations. The resources 
allocation is realised in dynamic way – 
modifications are driven by the stream of tasks, 
failures and dispatcher decisions [4], [9]. 
Complexity of this solutions force lower level of its 
description but in a same time high level perspective 
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on what is going on in the system. Regardless of the 
level of abstraction many of parameters should be 
defined or measured to find the most accurate 
solution. Since some of them are uneasy to measure 
we propose to use softcomputing [15] to model the 
system, since this kind of model can be very useful 
for further analysis of the system. In result we 
provide an approach or even an idea of the tool for 
network system administrator. We call the approach 
as the functional-reliability models of network 
system exploitation. In this part we shortly describe 
elements of transport system Next sections provide 
the details of the softcomputing approach necessary 
to reliability and functional description and analysis 
of the discrete transport system. The results show 
the essential practical data in the function of the 
reliability parameters of the system. Paper ends with 
some general conclusion and remarks for the future 
works. 
 
2. Discrete Transport System 
 

The Discrete Transport System (DTS) is understood 
as a system of transport resources (e.g. vehicles), 
transport infrastructure (e.g. roads) and a 
management system (e.g. a dispatcher supported by 
a computer system). In this way dependability 
(functional – reliable) properties of the DTS depend 
not only on technical infrastructure of the system 
but also on dispatcher decisions [26], [18]. 
Dispatcher decisions may be a reaction on traffic 
situations (e.g. a traffic jam, a temporary limitation 
of vehicle speed on the fixed segment of a road), on 
infrastructure faults (e.g. a truck with cargo is failed 
and it has to be repaired), on functional system 
faults (e.g. a point storehouse is overfilled or already 
sent parcels are not collected yet) [11], [25], [20]. 
The dispatcher decisions are taken on the base of 
such different criteria as financial costs, system 
performance parameters, availability of renewal 
teams, possibility to access other routes, 
acceptability of parcel delaying, etc. The Discrete 
Transport System DTS is defined as [27]: 
 

   
MSTTRESTIDTS ,,,=

                             
(1) 

 
where: 
TI – technical infrastructure of the system, 
RES – system resources, 
TT – transport tasks, 
MS – management system which is called 
dispatcher. 
 
The technical infrastructure TI of the discrete 
transport system is modelled as a directed graph 
[27], [19]: 

   
RRProadsplacesreloadingTI ,, ==

   
(2) 

 
where: 
 

   
K,,, CBARP =

                                           
(3) 

 
- set of reloading places (Figure 1), 
 

   
K,,, BCACABR =

                                    
(4)

 
 
- set of roads connecting reloading places. 
 
A reloading place is a node of the discrete transport 
system (a node in the TI graph) in which such 
functions as parcels collecting in storehouses, 
reloading parcels from one transport resources to 
other one or to a storehouse may be realised. The 
reloading place may be equipped with a storehouse 
(with limited capacity; e.g. CA, CB, etc.) and needs 
such “mechanical tools” as cranes or fork-lift track. 
Roads are modelled as directed arcs connected to 
nodes of the TI graph. Engineering parameters of 
the road are integrated into one representative 
measure called average speed of transport resource 
on this road segment (e.g. vAB). Of course the 
average speed depends of cargo, transport means 
type, direction of traffic, day time or month time etc. 
Sometimes it is possible that vAB ≠ vBA, but we can 
also assume the speed values are equal (vAB = vBA). 
System resources of the DTS are understood as 
collections of transport means, drivers and service 
teams which the dispatcher may use for transport 
tasks realisation and for removing some 
disturbances in the system work. A system resource 
is described by its functional (e.g. load capacity of a 
truck), technical (e.g. fuels expendable per 
kilometre) and reliability parameters (e.g. mean time 
between failures or mean time renewal) which may 
have deterministic or probabilistic nature. Drivers 
create a specific class of the system resource [24], 
[13], [27]. 
A transport task TT is understood as a pickup of a 
fixed cargo from the start node and a delivery of it 
to final node according to assumed time-table. Of 
course the transport task may be defined in more 
complicated way, e.g. a cargo may be collected in a 
few nodes and reloaded in several ones. Transport 
schedule can be defined in different ways, for 
example a cargo ought to be delivered to the node 
before the end of fixed time-period, because a train 
cannot wait for a truck with the cargo. 
Faults and renewals of a discrete transport 
system. There are considered many disruptions in 
execution of the discrete transport systems. The 
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failures of the DTS resources RES, e.g. physical 
failures of trucks or technical infrastructure TI (e.g. 
roads or reloading devices) need to use adequate 
such the DTS system means as service teams, 
garages, spare elements or substituted routes. 
Generally, in these situations “technical” system 
renewal processes are started on with assumption of 
the limited resources [27], [24]. Other sources of the 
DTS system disruptions we can find in organisation 
and management matters: 
1) overloading of the technical infrastructure (roads, 

reloading machines, etc.), 
2) traffic accidents or jams, 
 

 
 

Figure 1. Discrete Transport System – an idea 
 
3) dispatcher faults – he or she is not able to keep 

up the dynamic changes of the situation in the 
working DTS system. In these cases exploitation 
system renewal processes are initiated by the 
system dispatcher. The processes very often 
consume more time and money than a renewal of 
a “simple (physical)” broken technical resource, 
e.g. a repair of a failed truck or a lift. 

 
The dispatcher organises a work of the DTS system 
- available system resources are assigned to realised 
tasks. The dispatcher administers logistics of a 
transport firm based on the signed agreements 
specifying conditions of correct realisation of a task 
or sets of tasks [18], [26]. Dispatcher decisions are 
taken based on needs of assumed transport tasks and 
according (if it is possible) to assumed proper time-
tables. When some disruptions (failures, faults) 
occur the dispatcher chooses adequate system 
reactions. The dispatcher is supported by the 
computer aided tools to improve an assignment of 
system resources to transport tasks, to compose 
system traffic time-tables (planned and reserved for 
emergency conditions), to provide maintenance 
policies ready to use both for normal and disrupted 

situation in the system work. Because there are a lot 
of people involved into the system work the 
dispatcher should take his/her decisions taking into 
account not only computer system support results, 
but also based on his/her experience and his/her 
intelligence [17], [10], [6]. It is possible to define 
many classes of dispatchers, who are working in 
harmony with agreement between an transport 
employer and an owner of the discrete transport 
system. A passive dispatcher realises transport 
tasks agree to previously defined conditions and 
schedules. He or she uses earlier prepared lists of 
assumed DTS disruptions and lists of planned 
adequate system reactions in case of disruptions. A 
task oriented dispatcher is focused on execution of 
selected task or its sets. He or she may works agree 
with such strategy as FIFO, LIFO, FILO etc. A 
dynamic dispatcher is monitoring on-line a system 
and takes decisions adequate to system situation; of 
course the dynamic dispatcher cannot work as a 
fantastic virtuoso manager. If more detailed 
supporting data are prepared a priori, the real 
dependability properties (performance and 
reliability parameters) of the considered DTS system 
are closer to expected. Dependability measures of 
discrete transport systems are defined as global 
values (e.g. system efficiency, financial profit or 
loss) or as more detail measures such as a 
probability of isolated task execution or a set of 
tasks realised in a determined time interval [27], 
[24]. Functional and reliable properties of a discrete 
transport system have an effect on dependability 
measures at two fundamental levels: 
1. it is possibility to create a functional 

configuration of the task or the set of tasks, that 
means it is possibility to allocate needed system 
resources for the transport task (or tasks) 
execution, 

2. it is possibility that the transport task is correctly 
realised, that means allocated resources correctly 
work during assumed time and the assumed 
cargo is delivered according to assumed time-
table. 

 
The resources of all real systems are limited, so the 
system dispatcher has a significant impact on 
solving above given problems. His/her decisions 
concerning allocation technical infrastructure, 
transport means, service teams or reconfiguration of 
the system have to be taken up quickly and adequate 
to the situation [9], [15], [4]. 
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3. Analyzed system 
 
3.1. System overview 
 

Basic elements of system are as follow: store-houses 
of tradesperson, roads, vehicles, trans-shipping 
points, store-houses of addressee and transported 
media (commodities). The commodities are taken 
from store-houses of tradesperson and transported 
by vehicles to trans-shipping points. Other vehicles 
transport commodities from trans-shipping points to 
next trans-shipping points or to final store-houses of 
addressees. Moreover, in time of transportation 
vehicles dedicated to commodities could failed and 
then they are repaired (Figure 2) [24]. Different 
commodities are characterized by common attribute 
which can be used for their mutual comparison: 
capacity of commodities. The following 
assumptions related to the commodities are taken: it 
is possible to transport n different kinds of 
commodity in the system and each kind of 
commodity is measured by capacity. 
Road is an ordered double of system elements. The 
first element must be a store-house of tradesperson 
or trans-shipping point, the second element must be 
a trans-shipping point or store-house of addressee. 
Moreover, the road is described by following 
parameters: length, number of maintain crews, 
number of vehicles moving on the road. The road is 
assumed to have no damages. A single vehicle 
transports commodities from start to end point of a 
single road, return journey realizes in an empty 
status and the whole cycle is repeated. The 
assumptions are as follow: a single kind of 
commodity is transported at the moment, vehicles 
are universal. The numerous vehicle parameters can 
be described as random variables using various 
distributions. The store-house of tradesperson is an 
infinity source of single kind of commodity. Trans-
shipping points are a transition part of the system 
which is able to store the commodities. The trans-
shipping point is described by following parameters: 
global capacity, initial state described by capacity 
vector of commodities stored when the system 
observation begins, delivery matrix. This matrix 
defines which road is chosen when each kind of 
commodity leaves the shipping point. The 
commodity could be routed to more than one 
direction. Only one vehicle can be unloaded at the 
moment. If the vehicle can be unloaded, the 
commodity is stored in the trans-shipping point. If 
not, the vehicle is waiting in the only one input 
queue serviced by FIFO algorithm. Only one vehicle 
can be loaded at the moment. If the vehicle can be 
loaded (i.e. the proper commodity is presented and it 
could be routed a given road) the state of trans-

shipping is reduced. If not, the vehicle is waiting in 
the each output road FIFO queue [19]. The main 
task of the store-houses of addressee is to store the 
commodity as long as the medium is spent by the 
recipient. The store-house of addressee is described 
by following parameters: global capacity, initial 
state described as for the trans-shipping point, 
function or rule which describes how each kind of 
commodity is spent by recipients. Input algorithm is 
exactly the same as for trans-shipping point. Output 
algorithm can be described as: stochastic process, 
continuous deterministic or discrete deterministic 
one. Moreover, the following assumptions are taken: 
the capacity of the commodity can't be less than 
zero, "no commodity state” - is generated when 
there is a lack of required kind of commodity. 
 
3.2. Economic analysis 
 

The economic analysis is realized from vehicle 
owner's view-point. The revenue is proportional to 
number of store-houses of addressee, number of 
deliveries realized to single store-house of addressee 
and gain for delivery to store-house of addressee. 

A B

time

A

vehicle

trans-shipping point

store-houses of tradesperson

B

Commodity is consumed in
linear process

store-houses of addressee

Length: 30

Length: 40

Length: 30

Vehicles: 5

Length: 50

Length: 20

Vehicles: 5

Vehicles: 4

Vehicles: 6
Vehicles: 7

 
 

Figure 2. Analysed system – case study 
 
Following costs are taken into account: penalty 
costs - paid by a transportation firm when there is a 
lack of commodity in the store-house of addressee, 
repair costs - proportional to a unit of repair time, 
vehicle usage costs - in a function of time (salary of 
drivers) and in a function of distance (i.e. costs of 
petrol). The economic quality of discrete transport 
system is described by overall gain function G(T) 
estimated in given time-period T as difference 
between the revenue and costs. We have to 
remember that the overall gain G(T) is a random 
variable [12]. 
 
3.3. System structure 
 

The simulation program generates a description of 
all changes in the system during simulation (with all 
events). It is a base for calculation of any functional 
and reliability measures. The most valuable results 
of statistical analysis are: time percentage when the 
vehicle is present in each state, time percentage 
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when the store-house of addressee is present in each 
state, mean time when the store-house of addressee 
is empty - this way we can say if "no commodity 
state" is prolonged or only momentary. We also 
propose a quantile calculation of time when the 
store-house of addressee is empty. This is the 
answer if "no commodity state" situation sometimes 
lasts significantly longer than the mean time of 
empty store-house. Moreover, it is possible to 
observe the influence of changes related to single 
parameter or a set of parameters - vehicle repair 
time for example - for other system characteristics - 
as vehicle utilization level, or commodity accessible 
in store-houses. The calculated reliability and 
functional measures could be a base of developing 
economic measures [22], [14], [21]. Such layered 
approach allows a high level, economic analysis of 
the system. It is necessary to check different 
variants of maintenance organization and to choose 
the less expensive among them if the reliability 
criteria are satisfied. It could be done by subsequent 
Monte-Carlo analysis and calculation of the required 
economic or functional measures for a set of 
analyzed parameters. The system model described 
in previous sections is a subject of computer 
simulation. A special software package for 
simulation of the discrete transport system has been 
developed. The transport system is described in the 
specially designed script language (with syntax 
similar to XML) [5]. It is an input for simulator 
program (written in C++) performing Monte-Carlo 
simulation [1], [8]. Monte Carlo simulation has an 
advantage in that it does not constrain the system 
structure or kinds of distributions used [5]. 
However, it requires proper data pre-processing, 
enough time to realize the calculations and efficient 
calculation engine. 
 
4. Proposed approach 
 

The problem of speeding up functional and 
reliability analysis of discrete transport system we 
propose to solve by hybrid system using simulation 
and neural nets. In many tasks, i.e. in decision 
systems, there is a need to give an answer in a short 
time. However Monte-Carlo simulation requires 
quite a lot of time to realize calculations for a given 
set of system parameters. To solve this problem we 
have proposed a use of artificial neural networks 
[23]. The use of neural network is motivated by its 
universal approximation capability [3]. Knowing 
that most of output system parameters are continues 
we can expect that neural network can approximate 
any unknown function based on a set of examples. 
The time needed to get an output from learn neural 
network is very short. Solution generated by net 
seems to be satisfactory [23], because we do not 

need very precise results - time is the most 
important attribute of the solution. The neural 
network partly substitutes the simulation process. 
The neural net module is added to developed 
simulation software. The aim of this module is to 
generate an answer how to select the best system 
parameters (i.e. the maintenance agreements -  the 
average time of vehicle repair) based on the 
achieved system functional parameters (i.e. the 
average time of "no commodity" in the store-house 
of addressee). The process of data analysis will be 
as follows: 
1. set the input parameters for model of discrete 

transport system; 
2. give a range of an analyzed free parameter 

(parameters); 
3. perform initial Monte-Carlo analysis for a few 

parameters from a given range - calculate all 
required functional and reliability parameters; 

4. build a neural network approximation tool: 
Multilayer Perceptron; the inputs to the network 
are analyzed free parameters; the outputs are 
functional and reliability measures; 

5. build the answer about the maintenance 
agreement based on the output of the neural 
network and the proper economic measures; 

6. communicate with a user: play with functional 
and reliability data, goto 4. 

If more accurate analysis of economic parameter in 
a function of free parameter is required goto 3 - 
perform more Monte-Carlo analysis. 
 
4.1. Case study –  reliability parameters 
 

The experiment was realized for a simple parallel 
system (see Figure 3), which is composed of two 
identical elements. Thus there are three reliability 
states: both elements are working; one element is 
working, another is failed; both elements are failed. 
We assume that, time to failure for both elements 
has an exponential distribution. Time of repair 
consists of two parts: fixed time of maintenance 
crew coming and time to repair - normal 
distribution. Also, failures of the elements are 
independent. Of course structure of the proposed 
system is rather trivial, but easily expendable. On 
the other hand, the distribution of repair time is not 
so trivial. In general, such example is very good to 
demonstrate the idea of reliability analysis 
supported by neural network and can be easily 
adopted for different real tasks. For a case study we 
focused on estimating the mean time over one year 
of being in one of three system stages. The 
reliability analysis was realized using Monte Carlo 
simulation. Experiments were performed for given 
data: 
- data related to failures: mean time to failure: 10, 
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15, 20, 25, 30, 35, 40, 45, 50, 55, 60 days (these 
values were taken with an assumption about the 
exponential distribution of time to failure); 

- data related to repairs: repair crew coming time: 
0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1 
days (the additional assumption is that the 
maintenance crew coming time is fixed), mean 
time to repair: 0.1, 1, 2, 4, 6, 8, 10 days. 

These values were taken with an assumption about 
the normal distribution of time to repair. Standard 
deviation of repair time is the last data. We took the 
following values of this parameter: 0 - fixed time to 
repair, 0.5, 1.5, 2, 2.5 days. Additionally, all data 
where standard deviation of repair time was larger 
two times then mean time to repair where removed. 
The presented data gave in summary: 2904 
performed experiments. For each set of parameters 
20000 Monte Carlo simulation where performed. 
The Multilayer Perceptron was used to estimate the 
mean time over one year of being in one of three 
system stages. The network has four input neurons: 
corresponding to each of system parameters: mean 
time to failure, crew coming time, mean time to 
repair and standard deviation of time to repair. 
Three outputs correspond to mean time over one 
year of being in one of three system stages (both 
elements are working; one element is working, 
another is failed; both are failed. 
 

State 1 State 2 State 3

failure failure

repair repair

Both elements
are failed

Both elements
are working

One element
is working  

 

Figure 3. Structure of analysed system – reliability 
 
Outputs of the network where normalized to (0,1) 
range - divided by 356 (duration of year in days).  
Moreover, the network has single hidden layer and a 
sigmoidal transfer function. Number of neurons in 
the hidden layer was set to 20 by a set of 
preliminary experiments. The network was trained 
by Levenberg-Marquardt [3] algorithm using 
MATLAB package. Input data were divided in 
random way into two equally sized sets: training and 
testing. Three different kinds of experimental 
distance between resulting and original function 
have been used during testing procedure: 
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where: 

y^(xi) - network output, 
y(xi) - desired output (Monte Carlo simulation), 
N - number of examples. 
Tests were performed also for different number of 
hidden neurons: 4, 6, 8, 10, 12, 14, 16, 18 and 20. 
 
4.2. Results: reliability parameters 
 

For each set of parameters 20000 Monte Carlo 
simulation where performed. Resulting values and 
data range of them are as follow: 
T1 - average time when both objects are working in 
one year: 35.85 - 362.56 days, 
T2 - average time when only one object is working 
in one year: 2.42 - 165.62 days, 
T3 - average time when both objects failed in one 
year: 0.01 - 178.85 days. 
Results related to the tests of number of neurons in 
hidden layer are presented in Table 1. The network 
with 20 hidden neurons performs in the best way. 
To compare the neural network performance two 
additional tests were taken. One was focussed on 
Monte Carlo data stability. All simulations were 
performed one time more. The distances for 
different metrics between these two simulations are 
presented in Table 2. The second test was focussed 
on a classical method of time calculation of being in 
a given state based on stationary Markov model 
(with assumption of all exponential time 
distributions) [2]. Achieved results were compared 
with Monte Carlo simulation (Table 1). 
 
Table 1. Errors (for different types of distance) in 
days for different number of hidden neurons for 
testing set 
 

State 
numbe

r 

Distanc
e Type Number of neurons in hidden layer 

  4 6 8 10 12 14 16 18 20 
 

1L  2.56 
0.3
4 

0.2
5 

0.2
2 

0.3
2 

0.1
5 

0.1
6 

0.1
6 

0.1
7 

1 
2L  3.55 

0.5
5 

0.3
1 

0.2
9 

0.4
0 

0.2
0 

0.2
3 

0.2
1 

0.2
2 

 
∞L  34.7

4 
6.7
9 

1.2
6 

1.2
0 

1.9
1 

1.0
8 

2.4
5 

0.9
2 

0.9
3 

 
1L  2.02 

0.4
6 

0.2
8 

0.2
1 

0.2
5 

0.1
6 

0.1
5 

0.1
4 

0.1
4 

2 
2L  3.39 

0.6
3 

0.3
8 

0.2
8 

0.3
5 

0.2
1 

0.2
3 

0.1
8 

0.1
8 

 
∞L  30.9

2 
5.1
3 

1.6
3 

1.2
7 

2.8
7 

1.2
0 

3.2
8 

1.2
2 

0.6
4 

 
1L  1.07 

0.2
6 

0.1
9 

0.1
3 

0.2
2 

0.1
0 

0.0
9 

0.1
1 

0.0
9 

3 
2L  1.53 

0.3
5 

0.2
4 

0.1
7 

0.2
8 

0.1
4 

0.1
3 

0.1
4 

0.1
3 

 
∞L  7.08 

2.4
0 

1.2
0 

0.8
3 

0.9
7 

0.6
8 

0.6
4 

0.8
0 

0.6
5 
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Table 2. Errors in days for best neural network, 
Markov model and other Monte Carlo simulation 
 

State 
number 

Distance 
Type 

Errors in days between 
Monte Carlo simulation results and 

  other 
MC simulation 

best 
neural network 

Markov 
model 

 
1L  0.18 0.17 8.28 

1 
2L  0.23 0.22 10.58 

 
∞L  1.01 0.93 23.83 

 
1L  0.13 0.14 6.24 

2 
2L  0.17 0.18 7.51 

 
∞L  0.75 0.64 14.54 

 
1L  0.11 0.09 2.04 

3 
2L  0.15 0.13 3.34 

 
∞L  0.75 0.65 10.84 

 
Looking at results (Table 2), it is clear that neural 
network gives much better results than Markov 
approach. Moreover, received performance (in 
meaning of a result accuracy) of the neural network 
method is very close to the Monte Carlo method 
stability and probably very close to it is possible 
optimal performance. 
 
4.3. Case study – functional parameters 
 

To show possibilities of the proposed model and 
developed software we have analyzed an exemplar 
transport network presented in Figure 4. The 
network consists of two store-houses of 
tradesperson (each one producing its own 
commodity, marked as A and B), one trans-shipping 
point (with one storehouse for both commodities) 
and two store-houses of addressee (each one with 
one storehouse). The commodities are spent by each 
recipient. The process is continuous deterministic, 
the amount of consumption in time unit is marked 
by u with subscripts corresponding to store-houses 
of addressee and commodity id. It's exemplar values 
are presented in Figure 4. Having lengths of the 
roads (see Figure 4), the amount of commodity 
consumption in time unit for each store-house of 
addressee, the capacity of each vehicle (15), vehicle 
speed (50 and 75 in empty return journey) the 
number of vehicles for each road could be easy 
calculated. We have take into account some 
redundancy due to the fact of car failure (we 
assumed that the time between failures is 2000 time 
units) what results in following number of vehicles: 
road one n1=40, road two n2=12, road three 
n3=18(A)+6(B)=24 and road four 
n4=16(A)+8(B)=24. The analysis time T was equal 
to 20000. We have analyzed maintenance and 
service level agreement (SLA) dependency. From 
one side the transport network operator has to fulfil 
some service level agreement, i.e. have to deliver 
commodity in such way that a "no commodity state" 

is lower than a given stated level. Therefore the 
analyzed functional measure was a summary time of 
"no commodity state" during the analyzed time 
period. It could be only done if a proper 
maintenance agreement is signed. Therefore the 
argument of analyzed dependency was an average 
time of repair of vehicles. We assumed that we have 
four separated maintenance agreement, one for each 
for each road (roads 1 and 2 with one maintenance 
crew, and 3 and 4 with two maintenance crews). 
Also the exponential distribution of repair time was 
assumed. Therefore, we have four free parameters 
with values spanning from 1 to 1200. The system 
was simulated in 1500 points. For each repair time 
values set the simulation was repeated 25 times to 
allow to get some information of summary time of 
"no commodity" distribution. Two measures were 
calculated: average time of summary of "no 
commodity state" and its 4% quantile (i.e. the value 
of summary "no commodity" time that with 
probability 96% could be not higher). The achieved 
data from simulation was divided randomly into two 
sets: learning and testing. We have used the 
Multilayer Perceptron architecture with 4 input 
neurons which correspond to repair time for each 
road, 10 hidden layer neurons and 2 output neurons 
corresponding to calculated measures (average time 
of summary of "no commodity state" and its 4% 
quantile). The number of neurons in the hidden 
layer was chosen experimentally. Such network 
produced best results and higher numbers did not 
give any improvement. The tan-sigmoid was used as 
a transfer function in hidden layer and log-sigmoid 
output layer. Besides that, the output values have 
been weighted due to the fact the log-sigmoid has 
values between 0 and 1. The network presented 
above was trained using the Levenberg-Marquardt 
algorithm [3]. The achieved results, the mean of 
absolute value of difference between neural network 
results (multiplied by time range: 20000) and results 
from Monte-Carlo simulation, for testing data set 
was 364 time units and 397 respectively for an 
average time of summary of "no commodity state" 
and its 4% quantile. It is in a range of 1-2% of the 
analyzed transport system time. We have also tested 
the simulation answer stability, i.e. the difference 
between two different runs of Monte-Carlo 
simulations (25 of them each time) for both 
functional measures (average time of summary of 
"no commodity state" and its 5% quantile) was 387 
time units in an average. Therefore, the neural 
networks outputs are on the same level of accuracy 
as Monte-Carlo simulation since it was used for 
training the neural network the results could not be 
better. Whereas, there is no comparison between 
calculation time since the calculation of neural 
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network outputs is negligible compared to Monte-
Carlo simulation. 
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Figure 4. Structure of analysed system – functional 
parameters: l1=120, l2=90, l3=90, l4=120, u1A=60, 
u1B=20, u2A=40, u2B=20 
 
4.4. Softcomputing approach to dispatching 
 

As it was mentioned in the introduction we also 
proposed the management system based on a neural 
network based [24]. The system consists of a 
Multilayer Perceptron to decide if and where to send 
trucks. The input to the neural network consists of: 
 
   nfvcrccrccrcpkcpkcpkcin npknpk ,,...,,,,...,, 2121= ,   (8) 

 
npk – number of nodes of DTS infrastructure, 
pkci – number of containers waiting for delivery 
with destination address set to i-th node, 
nfv – number of free vehicles in the vehicle 
base, 
Each output of the network corresponds to each 
node: 
 
   

npkoutoutoutnnout ,...,, 21= ,                                   (9) 

 
The output of the network is interpreted as follows 
(for sigmoid function used in output layer): 
 
   }{maxarg ...1 inpki outj == .                                         (10) 

 
If outj is greater than 0.5 send a vehicle to node j 
else do nothing. If there are more vehicles available 
in the base, the largest vehicle that could be fully 
loaded is selected. If there are available several 
trucks with the same capacity selection is done 
randomly. The neural network decision (send a 
truck or not and where the truck should be sent) are 
taken in given moments in time. These moments are 
defined by following states of the system: 
• the vehicle comes back to the base and is ready 

for the next trip, 
• if in base there is at least one available vehicle 

and the number of containers of the same 
destination address is larger than the size of the 
smallest available vehicle. 

The neural network used in the management system 
requires a learning process that will set up the 
values of its weights. The most typical learning in 

the case of Multilayer Perceptron is the back 
propagation algorithm. However, it cannot be used 
here since it is impossible to state what should be 
the proper output values of the neural network. 
Since it is hard to reconcile what are the results of a 
single decision made by the management system. 
Important are results of the set of decisions. Since 
the business service realised by transport system is 
to move commodities without delays, the neural 
network should take such decisions that allows to 
reduce delays as much as possible. To train neural 
network to perform such task we propose to use 
genetic algorithm [20, 24]. Similar approach to 
training neural network is applied in case of 
computer games. The most important in case of 
genetic algorithm is a definition of the fitness 
function. To follow business service requirements of 
transport system we propose following definition of 
the fitness function calculated for a given neural 
network after some time (T) (therefore after a set of 
decisions taken by neural network): 
 
   

)(),0(

)(),0(
)(

TNTN

TNTN
Tfitness

insystemdelivered

stemontimeinsyontime

+
+

= .                   (11) 

 
It is a ratio of on-time delivers (within 24h and 
being in the system but not longer then 24h) to all 
delivers (that already delivered Ndelivered(0,T) and still 
being presented in the system Ninsystem(T)). 
 
5. Conclusion 
 

Results of functional and reliability analysis of 
exemplar discrete transport system are very 
promising. The best neural network could estimate 
the time of being in a given state with an error much 
smaller then one day in one year period. The time 
needed to achieve the answer is very fast. Therefore, 
the network could be used in any software package 
supporting decision process based of a reliability 
analysis. Time necessary for whole neural network 
training is less (in average 4 times) then time 
necessary for a single training vector preparation 
(run of 25 simulations for a single set of free 
parameters). An error related to the network answer 
- when the already trained network is tested by the 
input data which are not used during training - is in 
the range of disperse related to results of simulation. 
Of course there is an important aspect of avoiding 
over fitting or under training by neural network. At 
this stage of work it was done manually by 
observing the global error in function of training 
epochs and stopping training when the curve stops 
to decrease. The other interesting aspect of 
presented approach is the scalability projections. 
Increasing the number of modeled vehicles or 
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system elements increases the Monte Carlo 
simulation time significantly. In case of training 
time of neural network (classification time is 
negligible) increasing a number of simulated entities 
has not direct influence. However, if one wants to 
analyze more sophisticated relation between input 
parameters and output measures, i.e. increases the 
number of input parameters, it results in an increase 
of input neurons, therefore needs a larger number of 
training data and results in a longer training time. 
The network solution is not free of problems. The 
main disadvantage is that the particular net is 
correctly fixed only to a single structure of the 
system. For each model different neural network 
must be trained. The overall structure of the net 
could be the same but a new set of weights must be 
estimated. Future work is planned on checking the 
extrapolation features of the neural network. We are 
going to analyze the answer of the network for input 
data with range outside the training set. 
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