Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Intermetallic coatings from the Ni-Al system modified with rare earth elements (REE) additions are developed to protect the Ni-based superalloys against the increasingly demanding operating conditions, like those at ultra-supercritical (A-USC) power plants. The pack cementation process is generally limited to treatment of smaller parts, but simultaneously it allows to produce thick, well adhering and easily alloyed coatings. In this experiment, the Haynes® 263 alloy was subjected to pack cementation (PC) aluminizing process. The powder bed used in this experiment was prepared in two stages, i.e., first, the Al (8 wt.%), AlCl3 (4 wt.%), and Al2O3 (88 wt.%) powders were thoroughly mixed and only then, the Yb (1.5 wt.% of the all former) was added. The coating obtained through this process was investigated using scanning and transmission electron microscopy (SEM/TEM) methods. It helped to prove that the diffusive layer consisted mostly of Al14Cr3Ni2 ζ-phase, with significant amount of Al13(Co, Cr)4 and (Ni, Co, Cr)3Al4 larger precipitates as well as numerous smaller ones, composed of (Al, Ni, Co, Cr, Ti) or (Al, Ni, Co, Cr, Mo). The additive layer consisting of Al3Ni2 phase with up to 6 at. % Co and 2 at. % Cr was covered by a discontinuous layer of α-Al2O3 occasionally decorated with particles of the same phase. Only the very surface was found to be occupied by an amorphous Yb2O3 oxide, which formed a thin (~ 5 nm), but simultaneously a continuous layer. The latter finding is the first experimental documentation of the location of REE in the coating obtained through PC process using a powder bed modified with elements from that group.
Czasopismo
Rocznik
Tom
Strony
art. no. e59, 2024
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Metallurgy and Materials Science of Polish Academy of Sciences, 25 Reymonta st., 30‑059 Krakow, Poland
autor
- Lukasiewicz Research Network - Krakow Institute of Technology (KIT), Centre of Materials and Manufacturing Research, 73 Zakopiańska st., 30‑418 Krakow, Poland
autor
- Lukasiewicz Research Network - Krakow Institute of Technology (KIT), Centre of Materials and Manufacturing Research, 73 Zakopiańska st., 30‑418 Krakow, Poland
autor
- Department of Casting, University of Science and Technology (AGH), 23 Reymonta st., 30‑059 Krakow, Poland
autor
- Lukasiewicz Research Network - Krakow Institute of Technology (KIT), Centre of Materials and Manufacturing Research, 73 Zakopiańska st., 30‑418 Krakow, Poland
Bibliografia
- 1. Klower J, Husemann RU, Bader M. Development of nickel alloys based on Alloy 617 for components in 700°C power plants. Procedia Eng. 2013;55:226-31.
- 2. Han G-M, Tian C-G, Cui C-Y, Hu Z-Q, Sun X-F, Le Chatelier P. Effect in nimonic 263 superalloy. Acta Metall Sin. 2015;28:542-9.
- 3. Feuerstein A, Knapp J, Taylor T, Ashary A, Bolcavage A, Hitchman N. Technical and economic aspects of current thermal barrier coating systems for gas turbine engines by thermal spray and EBPVD: a review. J Therm Spray Technol. 2007;17:199-213.
- 4. Goward GW, Cannon LW. Pack cementation coatings for superalloys: a review of history, theory, and practice. J Eng Gas Turbines Power. 1988;110:150-4.
- 5. Priest MS, Zhang Y. Synthesis of clean aluminide coatings on Ni-based superalloys via a modified pack cementation process. Mater Corros. 2015;66:1111-9.
- 6. Yavorska M, Sieniawski J, Zielińska M. Functional properties of aluminide layer deposited on INCONEL 713 LC Ni-based superalloy in CVD process. Arch Metall Mater. 2011;56:187-92.
- 7. Zagula-Yavorska M, Romanowska J, Pytel M, Sieniawski J. The microstructure and oxidation resistance of the aluminide coatings deposited by the CVD method on pure nickel and hafnium-doped nickel superalloys. Arch Civil Mech Eng. 2015;15:862-72.
- 8. Bianco R, Rapp RA. Pack cementation diffusion coatings, in Metallurgical and Ceramic Protective Coatings, ed. Stern, Chapman & Hall 1996, pp. 236-257.
- 9. Elhelaly MA, ElZomor MA, Ahmed MH, Youssef AO. Effect of zirconium addition on high-temperature cyclic oxidation of diffusion cromo-aluminized Ni-base superalloy. Oxid Met. 2019;91:159-75.
- 10. Kotkowiak M, Piasecki A, Kotkowiak M, Kulka M. Heat-resisting aluminized coatings modified by chromium addition produced on nickel-based alloys. Trans Indian Inst Metals. 2018;71:2919-31.
- 11. Xiang ZD, Datta PK. Pack cementation processes for the formation of refractory metal modified aluminide coatings on nickel-based superalloys. J Mater Sci. 2003;38:3721-8.
- 12. Zhao X, Zhou Ch. Effect of Y2O3 content in the pack on microstructure and hot corrosion resistance of Y-Co-modified aluminide coating. Corros Sci. 2014;86:223-30.
- 13. Pedraza F, Bouchaud B. Solid state interfacial reactions in a ceria-coated Ni-based superalloy. Surface Coatings Technol. 2020;383: 125202.
- 14. Zahedi H, Nogorani FSh, Safari M. Microstructure analysis of the pack cementation aluminide coatings modified by CeO2 addition. Met Mater Int. 2021;27:922-30.
- 15. Liu Z, Zhao X, Guo H, Zhou Ch. Cyclic oxidation resistance of Ce/Co modified aluminide coatings on nickel based superalloys. Corros Sci. 2015;94:135-41.
- 16. Yuwen P, Zhou Ch. Improved hot corrosion resistance of Dy-Ce-modified aluminide coating by pack cementation process on nickel based superalloys. Corros Sci. 2016;112:710-7.
- 17. Kipkemoi J, Tsipas D. Rare-earth modified chromium-aluminide coatings applied by pack cementation method on low alloyed steel. J Mater Sci. 1996;31:6247-50.
- 18. Lin N, Xie F, Zhong T, Wu X, Tian W. Influence of adding various rare earths on microstructure and corrosion resistance of chromizing coatings prepared via pack cementation on P110 steel. J Rare Earths. 2010;28:301-4.
- 19. Guo H, Wang D, Peng H, Gong Sh, Xu H. Effect of Sm, Gd, Yb, Sc and Nd as reactive elements on oxidation behaviour of β-NiAl at 1200 °C. Corros Sci. 2014;78:369-77.
- 20. Li DG, Song SL, Chen DR, Liang P. Effects of Ce, Sm and Yb on cavitation erosion of NBA alloy in 3.5% NaCl solution. Ultrasonics Sonochem. 2022;88:106093.
- 21. Dudziak T, Rząd E, Polczyk T, Jahns K, Polkowski W, Polkowska A, Wojcik M. Preliminary studies on rare elements addition and effect on oxidation behaviour of pack cementation coatings deposited on variety of steels at high temperature. Materials. 2021;14:6801.
- 22. Zhao J-C, Ravikumar V, Beltran AM. Phase precipitation and phase stability in nimonic 263. Metall Mater Trans A. 2001;32A:1271-82.
- 23. Grushko B, Kowalski W, Pavluchkov D, Sorowiec M. A contribution to the Al-Ni-Cr phase diagram. J Alloy Compd. 2008;460:299-304.
- 24. Grushko B, Kowalski W, Pavluchkov D, Przepiorzyński B, Mi S. Sorowiec, Al-rich region of the Al-Ni-Cr alloy system below 900 °C. J Alloy Compd. 2009;485:132-8.
- 25. Grushko B, Kowalski W, Mi SB. A study of the Al-Co-Cr alloy system. J Alloy Compd. 2018;739:280-9.
- 26. Houngninou C, Chevalier S, Larpin JP. Synthesis and characterization of pack cemented aluminide coatings on metals. Appl Surf Sci. 2004;236:256-69.
- 27. Reed RC. The superalloys fundamentals and applications. New York: Cambridge University Press; 2006.
- 28. Tong L, Dengzun Y, Chungen Z. Low-temperature formation of aluminide coatings on Ni-base superalloys by pack cementation. Chin J Aeronautics. 2010;23:381-5.
- 29. Pichoir R. High temperature alloys for gas turbines. In: Cout-sourandis D et al., eds. Appl. Sci. Pub., London, 1978.
- 30. Jung SB, Minamino Y, Yamane T, Saji S. Reaction diffusion and formation of Al3Ni and Al3Ni2 phases in the Al-Ni system. J Mater Sci Lett. 1993;12:1684-6.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9274b4a1-4924-4d8b-a092-639d0679f4fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.