PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of packing media on stratified EPS and their role in the biofilm of trickling biofilter

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The research focused on such packing media as ceramsite, polypropylene balls, and elastic fillers, and analyzed the main characteristics of extracellular polymeric substances (EPS) in their filter biofilms. The EPS were categorized as soluble EPS (S-EPS) and bound EPS (B-EPS). The component characteristics of stratified EPS were investigated via UV-Vis spectroscopy and a three-dimensional excitation-emission matrix (3D-EEM). The results showed that the EPS content of ceramsite biofilm was 245.2 mg/g VSS, which was higher than those of elastic filler material and polypropylene ball by 1.26 and 1.51 times, respectively. The protein (PN) and polysaccharide (PS) ratio of EPS in the ceramsite filter material was highest in S-EPS and B-EPS, indicating that the EPS have a stable structure. More than 67.58% of EPS formed by ceramsite was tightly bound EPS (TB-EPS), which was beneficial to maintaining the stability of biofilms. The levels of proteins (PN) and humic substances formed by ceramsite contained in the TB-EPS were higher than those of elastic filter material and polypropylene balls. 3D-EEM fluorescence spectra revealed that TB-EPS formed by a ceramsite contained high concentrations of tryptophan, tyrosine, and humic substances. The dehydrogenase activity of biofilm formed by ceramsite filler was higher than that formed by elastic fillers and polypropylene balls.
Rocznik
Strony
25--36
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China PR
autor
  • Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China PR
autor
  • Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China PR
autor
  • Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China PR
autor
  • Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China PR
autor
  • Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China PR
Bibliografia
  • [1] JASON B.K., PARK C.C., TANNER R., CRAGGS J., Assessment of sludge characteristics from a biological trickling filter (BTPF) system, J. Water Proc. Eng., 2018, 22, 172–179. DOI: 10.1016/j.jwpe.2018.02.006.
  • [2] SHI Y., HUANG J., ZENG G., GU Y., CHEN Y., HU Y., TANG B., ZHOU J., YANG Y., SHI L., Exploiting extracellular polymeric substances (EPS) controlling strategies for performance enhancement of biological wastewater treatments. An overview, Chem., 2017, 180, 396–411. DOI: 10.1016/j.chemosphere.2017.04.042.
  • [3] ALI I., KHAN Z.M., SULTAN M., MAHMOOD M.H., FARID H.U., ALI M., NASIR A., Experimental study on maize cob trickling filter-based wastewater treatment system. Design, development, and performance evaluation, Pol. J. Environ. Stud., 2016, 25 (6), 2265–2273. DOI: 10.15244/pjoes/63657.
  • [4] ALI I., KHAN Z.M., PENG C.S., NAZ I., SULTAN M., ALI M., MAHMOOD M.H., NIAZ Y., Identification and elucidation of the designing and operational issues of trickling filter systems for wastewater treatment, Pol. J. Environ. Stud., 2017, 26 (6), 2431–2444. DOI: 10.15244/pjoes/70627.
  • [5] REN J.H., CHENG W., WAN T., WANG M., MENG T., LV T.T., Characteristics of the extracellular polymeric substance composition in an up-flow biological aerated filter reactor. The impacts of different aeration rates and filter medium heights, Bioresour. Technol., 2019, 289, 121664. DOI: 10.1016/j.biortech.2019.121664.
  • [6] MIAO L., ZHANG Q., WANG S., LI B., WANG Z., ZHANG S., ZHANG M., PENG Y., Characterization of EPS compositions and microbial community in an Anammox SBBR system treating landfill leachate, Bioresour. Technol., 2018, 249, 108–116. DOI: 10.1016/j.biortech.2017.09.151.
  • [7] SHENG G.P., YU H.Q., LI X.Y., Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems. A review, Biotechnol. Adv., 2010, 28, 882–894. DOI: 10.1016/j.biotechadv.2010.08.001.
  • [8] JIA F., YANG Q., LIU X., LI X., LI B., ZHANG L. PENG Y., Stratification of extracellular polymeric substances (EPS) for aggregated anammox microorganisms, Environ. Sci. Technol., 2017, 51 (6), 3260–3268. DOI: 10.1021/acs.est.6b05761.
  • [9] FLEMMING H.C., WINGENDER J., SZEWZYK U., STEINBERG P., RICE S.A., KJELLEBERG S., Biofilms. An emergent form of bacterial life, Nat. Rev. Microbiol., 2016, 14, 563–575. DOI: 10.1038/nrmicro.2016.94.
  • [10] WANG B.B., LIU X.T., CHEN J.M., PENG D.C., HE F., Composition and functional group characterization of extracellular polymeric substances (EPS) in activated sludge: the impacts of polymerization degree of proteinaceous substrates, Water Res., 2018, 129, 133–142. DOI: 10.1016/j.watres.2017.11.008.
  • [11] MORE T.T., YADAY J.S.S., YAN S., TYAGI R.D., SURAMPALLI R.Y., Extracellular polymeric substances of bacteria and their potential environmental applications, J. Environ. Manage., 2014, 144, 1–25. DOI: 10.1016/j.jenvman.2014.05.010.
  • [12] ROBERT D., DIMITRIOS B., NATHALIE T., Rapid and reliable quantification of biofilm weight and nitrogen content of biofilm attached to polystyrene beads, Water Res., 2008, 42 (12), 3082–3088. DOI: 10.1016/j.watres.2008.02.023.
  • [13] KEITHLEY S.E., KIRISITS M.J., An improved protocol for extracting extracellular polymeric substances from granular filter media, Water Res., 2018, 129, 419–427. DOI: 10.1016/j.watres.2017.11.020.
  • [14] LI R.Q ., WANG J.X., LI H.J., Isolation and characterization of organic matter-degrading bacteria from coking wastewater treatment plant, Water Sci. Technol., 2018, 78 (07), 1517–1524. DOI: 10.2166/wst.2018.427.
  • [15] YU H.R., QU F.S., SUM L.P., LIANG H., HAN Z.S., CHANG H.Q., SHAO S.L., LI G.B., Relationship between soluble microbial products (SMP) and effluent organic matter (EFOM) characterized by fluorescence excitation emission matrix coupled with parallel factor analysis, Chem., 2015, 121, 101–109. DOI: 10.1016/j.chemosphere.2014.11.037.
  • [16] XIA M.C., BAO P., ZHANG S.S., LIU A.J., SHEN L., YU R.L., LIU Y.D., CHEN M., LI J.K., WU X.L., QIU G.Z., ZENG W.M., Extraction and characterization of extracellular polymeric substances from a mixed fungal culture during the adaptation process with waste printed circuit boards, Environ. Sci. Pollut. Res. Int., 2019, 26 (22), 137–146. DOI: 10.1007/s11356-019-05234-7.
  • [17] ZHU L., ZHOU J.H., LV M.L., YU H.T., ZHAO H., XU X.Y., Specific component comparison of extracellular polymeric substances (EPS) in flocs and granular sludge using EEM and SDS-PAGE, Chem., 2015, 121, 26–32. DOI: 10.1016/j.chemosphere.2014.10.053.
  • [18] WEI L., AN X., WANG S., XUE C., JIANG J., ZHAO Q., KABUTEY F.T., WANG K., Effect of hydraulic retention time on deterioration/restarting of sludge anaerobic digestion: extracellular polymeric substances and microbial response, Bioresour. Technol., 2017, 244, 261–269. DOI: 10.1016/j.biortech.2017.07.110.
  • [19] LIU C.J., LI X., YANG Y.L., FAN X.Y., TAN X., YIN W.C., LIU Y.W., ZHOU Z.W., Double-layer substrate of shale ceramsite and active alumina tidal flow constructed wetland enhanced nitrogen removal from decentralized domestic sewage, Sci. Total Environ., 2020, 703, 135629. DOI: 10.1016/j.scitotenv.2019.135629.
  • [20] GUO X., WANG X., LIU J.X ., Composition analysis of fractions of extracellular polymeric substances from an activated sludge culture and identification of dominant forces affecting microbial aggregation, Sci. Rep., 2016, 6, 28391. DOI: 10.1038/srep28391.
  • [21] WANG W.G., YAN Y., ZHAO Y.H., SHI Q., WANG Y.Y., Characterization of stratified EPS and their role in the initial adhesion of anammox consortia, Water Res., 2020, 169, 115223. DOI: 10.1016/j.watres.2019.115223.
  • [22] XU H.C., CAI H.Y., YU G.H., JIANG H.L., Insights into extracellular polymeric substances of cyanobacterium Microcystis aeruginosa using fractionation procedure and parallel factor analysis, Water Res., 2013, 47 (6), 2005–2014. DOI: 10.1016/j.watres.2013.01.019.
  • [23] WANG L.F., CHEN W., SONG X.C., LI Y., ZHANG W.L., ZHANG H.J., NIU L.H., Cultivation substrata differentiate the properties of river biofilm EPS and their binding of heavy metals. A spectroscopic insight, Environ. Res., 2020, 182, 109052. DOI: 10.1016/j.envres.2019.109052.
  • [24] JIANG Y.Q., LI J.H., FANG Z.G., Effect of porous filler characteristics on biofilm formation, J. Environ. Sci., 2020, 1–9. DOI: 10.13227/j.hjkx.201912226.
  • [25] CHEN Y.C., SHI J.W., RONG H., ZHOU X., CHEN F.Y., LI X.L., WANG T., HOU H.B., Adsorption mechanism of lead ions on porous ceramsite prepared by co-combustion ash of sewage sludge and biomass, Sci. Total Environ., 2020, 702, 135017. DOI: 10.1016/j.scitotenv.2019.135017.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9266943c-bc25-474a-9ca6-bc83605ea49b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.