Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The silicone based room temperature vulcanized (RTV) polymers are commonly used materials for medicine, especially for dentures and maxillofacial prostheses. Unfortunately, the colonization of those materials by pathogenic microorganisms is wellknown problem related with their applications. The aim of presented study was to examine antibacterial properties of RTV silicone for dentistry modified with silver nanoparticles. Design/methodology/approach: The silver nanoparticles were introduced into twocomponent system silicone based materials. The presence of silver nanoparticles was investigated with scanning electron microscope (SEM). The antibacterial activity against Streptococcus mutans was determined. The result were statistically analysed with a Statistica 12.5 software and non-parametric Kruskal-Wallis test (α = 0.05). Findings: The silver nanoparticles introduction into RTV - silicone allowed to enhance the antimicrobial resistance against standard strain of Streptococcus mutans. Research limitations/implications: In this research only Streptococcus mutans bacterium strain was used. In future activity of presented materials against other pathogenic bacteria living in oral cavity should be determined. Additionally long term investigation should be prepared. Practical implications: The colonization of dental materials with pathogenic bacteria and fungus is one of the most important and still unresolved problems related to exposition on oral environment. The low microbiological resistance of RTV-silicones and antimicrobial potential of silver were reported in numerous studies. The gram-positive Streptococcus mutans is commonly found in the human oral cavity and it is an important factor to tooth decay. Originality/value: The resistance against Streptococcus mutans of modified material was enhanced. The investigated materials could be a potential factor a potential conducive to reducing the risk of oral cavity infections.
Wydawca
Rocznik
Tom
Strony
59--65
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
- Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, Gliwice 44-100, Poland
autor
- Chair and Department of Microbiology and Immunology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, ul. Jordana 19, Zabrze 41-808, Poland
autor
- Faculty of Prosthodontic Technology, Medical School of Silesian Voivodship, ul. 3 Maja 63, 41-800 Zabrze, Poland
autor
- Stencel Dental Center of Dentistry and Implantology, ul. Franciszka Karpińskiego 3, 41-500 Chorzów
autor
- Stencel Dental Center of Dentistry and Implantology, ul. Franciszka Karpińskiego 3, 41-500 Chorzów
Bibliografia
- [1] K. Bulard, R.L. Taylor, J. Verran, J.F. McCord, Colonization and penetration of denture soft lining materials by Candida albicans, Dental Materials 20 (2004) 167-175.
- [2] P.J. Mack, Denture soft linings: Clinical indications, Australian Dental Journal 34 (1989) 454-458.
- [3] A. El-Hadary, J.L. Drummond, Comparative study of water sorption, solubility, and tensile bond strength of two soft lining materials, Journal of Prosthetic Dentistry 83 (2000) 356-361.
- [4] K. Saber-Sheikh, R.L. Clarke, M. Braden, Viscoelastic properties of some soft lining materials. II-Ageing characteristics, Biomaterials 20 (1999) 2055-2062.
- [5] G. Chladek, J. Żmudzki, J. Kasperski, Long-Term Soft Denture Lining Materials. Materials 7 (2014) 5816- 5842.
- [6] M. Aparajita, C. Sunita, G. Hemlata, H.G. Jagadeesh, Maxillofacial Prosthetic Materials - An Inclination Towards Silicones, Journal of Clinical and Diagnostic Research 8/12 (2014) ZE08-ZE13.
- [7] A. Colas, J. Curtis, Silicone biomaterials: History and chemistry, in: Biomaterial Science: An Introduction to Materials in Medicine, 2nd ed.; B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemmons, Elsevier: Amsterdam, The Netherlands, 2004, 83-85.
- [8] M.M. Mutluay, S. Oguz, F. Fløystrand, E. Saxegaard, A. Dogan, B. Bek, I.E. Ruyter, A prospective study on the clinical performance of polysiloxane soft liners: One-year results, Dental Materials Journal 27 (2008) 440-447.
- [9] H. Nikawa, C. Jin, T. Hamada, S. Makihira, H. Kumagai, H. Murata, Interactions between thermal cycled resilient denture lining materials, salivary and serum pellicles and Candida albicans in vitro. Part II. Effects on fungal colonization, Journal of Oral Rehabilitation 27 (2000) 124-130.
- [10] M.G.J. Waters, D.W. Williams, R.G. Jagger, M.A.O. Lewis, Adherence of Candida albicans to experimental denture soft lining materials, Journal of Prosthetic Dentistry 77/3 (1997) 306-312.
- [11] N. Boscato, A. Radavelli, D. Faccio, A.D. Loguercio, Biofilm formation of Candida albicans on the surface of a soft denture-lining material, Gerodontology 263 (2009) 210-213.
- [12] J.B. Huh, Y. Lim, H.I. Youn, B.M. J.Y. Chang, Lee, S.W. Shin, Effect of denture cleansers on Candida albicans biofilm formation over resilient liners, Journal of. Advanced. Prosthodontics 6 (2014) 109- 114.
- [13] J. Kleczewska, D .M.Bielinski, J. Nowak, Sokołowski, M. Łukomska-Szymańska, Dental Composites Based on Dimethacrylate Resins Reinforced by Nanoparticulate Silica, M. Polymers & Polymer Composites 24/6 (2016) 411-418.
- [14] K. Sokołowski, M. I. Szynkowska, M. Łukomska-Szymańska, A. Pawlaczyk, Z. Kowalski, A. Sobczak, J. Sokołowski, Properties of flow-type composite resin modified with silver and gold nanoparticles, Chemical Industry 92/6 (2013) 1032-1037 (in Polish).
- [15] G. Chladek, I. Barszczewska-Rybarek, J. Łukaszczyk, Developing the procedure of modifying the denture soft liner by silver nanoparticles, Acta of Bioengineering and Biomechanic 14/1 (2012) 23-29.
- [16] G. Chladek, A. Mertas, I. Barszczewska-Rybarek, T. Nalewajek, J. Żmudzki, W. Król, J. Łukaszczyk, Antifungal Activity of Denture Soft Lining Material Modified by Silver Nanoparticles A Pilot Study, International Journal of Molecular Sciences 12 (2011) 4735-4744.
- [17] A. Melaiye, Z. Sun, K. Hindi, et al., Silver(I)- imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: Formation of nanosilver particles and antimicrobial activity, The Journal of the American Chemical Society 127 (2005) 2285-2291.
- [18] T. Durai Anand, C. Pothiraj, R.M. Gopinath, B. Kayalvizhi. Effect of oil-pulling on dental caries causing bacteria, African Journal of Microbiology Research 2 (2008) 63-66.
- [19] E. Adekey, S. Prabhu, D. Willson, D. Daffary, N. Johnson. Odontogenic Infections of the Jawbones and Related Structure in Oral Disease in the Tropics. Oxford University Press, New York, 1992, 674-685.
- [20] M.A. Van Oosten, F.X. Nikx, H.H. Rengi, Microbial and clinical measurement of periodontal pockets during sequential periods of non-treatment and metronidazole therapy, Journal of Clinical Periodontology 14 (1987) 197-204.
- [21] M. Nakamura, A. Oyane, Y. Shimizu, S. Miyata, A. Saeki, H. Miyaji, Physicochemical fabrication of antibacterial calcium phosphate submicrospheres with dispersed silver nanoparticles via coprecipitation and photoreduction under laser irradiation, Acta Biomaterialia 46 (2016) 299-307.
- [22] R. Emmanuel, S. Palanisamy, S.M. Chen, K. Chelladurai, S. Padmavathy, M. Saravanan, P. Prakash, M. Ajmal Ali, F.M. Al-Hemaid, Antimicrobial efficacy of green synthesized drug blended silver nanoparticles against dental caries and periodontal disease causing microorganisms, Materials Science & Engineering C: Materials for biological applications 1/56 (2015) 374-379.
- [23] S. Kasraei, L. Sami, S. Hendi S, M.Y. Alikhani, L. Rezaei-Soufi, Z. Khamverdi, Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus, Restorative Dentistry & Endodontics 39/2 (2014) 109-114.
- [24] R. Ghorbanzadeh B. Pourakbari, A. Bahador, Effects of Baseplates of Orthodontic Appliances with in situ generated Silver Nanoparticles on Cariogenic Bacteria: A Randomized, Double-blind Cross-over Clinical Trial, The Journal of Contemporary Dental Practice 16/4 (2015) 291-298.
- [25] L. Kvitek, A. Panacek, R. Prucek, J. Soukupova, M. Vanickova, M. Kolar, R. Zboril, Antibacterial activity and toxicity of silver—Nanosilver versus ionic silver. Journal of Physics: Conference Series 304 (2011) 012029.
- [26] K. Sokołowski, M. Szynkowska, A. Pawlaczyk, M. Łukomska-Szymaska, J. Sokołowski, The impact of nanosilver addition on element ions release form lightcured dental composite and compomer into 0.9% NaCl, Acta Biochimica Polonica 61/2 (2014) 317-23.
- [27] K. Chaloupka, Y. Malam, A.M. Seifalian, Nanosilver as a new generation of nanoproduct in biomedical applications, Trends in Biotechnology 28 (2010) 580- 588.
- [28] X. Chen, H.J. Schluesener, Nanosilver: A nanoproduct in medical application, Toxicology Letters 176 (2008) 1-12.
- [29] N. Miura, Y. Shinohara, Cytotoxic effect and apoptosis induction by silver nanoparticles in HeLa cells, Biochemical and Biophysical Research Communications 390 (2009) 733-737.
- [30] C. You, C. Han, X. Wang, Y. Zheng, Q. Li, X. Hu, H. Sun, The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity, Molecular Biology Reports 39/9 (2012) 9193-9201.
- [31] A. Ali, M. Suhail, S. Mathew, M.A. Shah, S.M. Harakeh, S. Ahmad, Z. Kazmi, M.A. Alhamdan, A. Chaudhary, G.A. Damanhouri, I. Qadri, Nanomaterial Induced Immune Responses and Cytotoxicity, Journal of Nanoscience and Nanotechnology 16/1 (2016) 40-57.
- [32] C. Castellini, S. Ruggeri, S. Mattioli, G. Bernardini, L. Macchioni, E. Moretti, G. Collodel, Long-term effects of silver nanoparticles on reproductive activity of rabbit buck. Systems Biology in Reproductive Medicine 60/3 (2014) 143-50.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9261e080-b487-42cc-964b-f3a39b8b1ea2