PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of equal channel angular pressing and heat treatments on the microstructures and mechanical properties of selective laser melted and cast AlSi10Mg alloys

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigated the impact of the equal channel angular pressing (ECAP) combined with heat treatments on the microstructure and mechanical properties of AlSi10Mg alloys fabricated via selective laser melting (SLM) and gravity casting. Special attention was directed towards determining the effect of post-fabrication heat treatments on the microstructural evolution of AlSi10Mg alloy fabricated using two different routes. Three initial alloy conditions were considered prior to ECAP deformation: (1) as-cast in solution treated (T4) condition, (2) SLM in T4 condition, (3) SLM subjected to low-temperature annealing. Light microscopy, transmission electron microscopy, X-ray diffraction line broadening analysis, and electron backscattered diffraction analysis were used to characterize the microstructures before and after ECAP. The results indicated that SLM followed by low-temperature annealing led to superior mechanical properties, relative to the two other conditions. Microscopic analyses revealed that the partial-cellular structure contributed to strong work hardening. This behavior enhanced the material’s strength because of the enhanced accumulation of geometrically necessary dislocations during ECAP deformation.
Rocznik
Strony
77--94
Opis fizyczny
Bibliogr. 44 poz., rys., wykr.
Twórcy
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, 18A Konarskiego Street, 44-100 Gliwice, Poland
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, 18A Konarskiego Street, 44-100 Gliwice, Poland
  • Center of 3D Printing Protolab, Department of Machining, Assembly and Engineering Technology, Faculty of Mechanical Engineering, VSB-TU Ostrava, 17. Listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
autor
  • Center of 3D Printing Protolab, Department of Machining, Assembly and Engineering Technology, Faculty of Mechanical Engineering, VSB-TU Ostrava, 17. Listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
  • Center of 3D Printing Protolab, Department of Machining, Assembly and Engineering Technology, Faculty of Mechanical Engineering, VSB-TU Ostrava, 17. Listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
  • Department of Materials Science, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, 18A Konarskiego Street, 44-100 Gliwice, Poland
Bibliografia
  • [1] Kaynak Y, Kitay O. The effect of post-processing operations on surface characteristics of 316L stainless steel produced by selective laser melting. Addit Manuf. 2019. https:// doi. org/ 10. 1016/j. addma. 2018. 12. 021.
  • [2] Xing X, Duan X, Jiang T, Wang J, Jiang F. Ultrasonic peening treatment used to improve stress corrosion resistance of AlSi10Mg components fabricated using selective laser melting. Metals (Basel). 2019. https:// doi. org/ 10. 3390/ met90 10103.
  • [3] Scherillo F. Chemical surface finishing of AlSi10Mg components made by additive manufacturing. Manuf Lett. 2019. https:// doi. org/ 10. 1016/j. mfglet. 2018. 12. 002.
  • [4] Liu S, Guo H. Influence of hot isostatic pressing (HIP) on mechanical properties of magnesium alloy produced by selective laser melting (SLM). Mater Lett. 2020;265:127463. https:// doi. org/ 10. 1016/j. matlet. 2020. 127463.
  • [5] Wang Y, Shi J. Effect of hot isostatic pressing on nanoparticles reinforced AlSi10Mg produced by selective laser melting. Mater Sci Eng A. 2020. https:// doi. org/ 10. 1016/j. msea. 2020. 139570.
  • [6] Yu H, Li F, Wang Z, Zeng X. Fatigue performances of selective laser melted Ti-6Al-4V alloy: Influence of surface finishing, hot isostatic pressing and heat treatments. Int J Fatigue. 2019. https:// doi. org/ 10. 1016/j. ijfat igue. 2018. 11. 019.
  • [7] Habibiyan A, Hanzaki AZ, Abedi HR. An investigation into microstructure and high-temperature mechanical properties of selective laser-melted 316L stainless steel toward the development of hybrid ampliforge process. Int J Adv Manuf Technol. 2020. https:// doi. org/ 10. 1007/ s00170- 020- 05870-1.
  • [8] Uzan NE, Ramati S, Shneck R, Frage N, Yeheskel O. On the effect of shot-peening on fatigue resistance of AlSi10Mg specimens fabricated by additive manufacturing using selective laser melting (AM-SLM). Addit Manuf. 2018. https:// doi. org/ 10. 1016/j. addma. 2018. 03. 030.
  • [9] Zhang P, Li SX, Zhang ZF. General relationship between strength and hardness. Mater Sci Eng A. 2011. https:// doi. org/ 10. 1016/j. msea. 2011. 08. 061.
  • [10] Yusuf SM, Hoegden M, Gao N. Effect of sample orientation on the microstructure and microhardness of additively manufactured AlSi10Mg processed by high-pressure torsion. Int J Adv Manuf Technol. 2020. https:// doi. org/ 10. 1007/ s00170- 019- 04817-5.
  • [11] Mohd Yusuf S, Nie M, Chen Y, Yang S, Gao N. Microstructure and corrosion performance of 316L stainless steel fabricated by selective laser melting and processed through high-pressure torsion. J Alloys Compd. 2018. https:// doi. org/ 10. 1016/j. jallc om. 2018. 05. 284.
  • [12] Segal V. Equal-channel angular extrusion (ECAE): from a laboratory curiosity to an industrial technology. Metals (Basel). 2020. https:// doi. org/ 10. 3390/ met10 020244.
  • [13] Valiev RZ, Langdon TG. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci. 2006;51:881–981. https:// doi. org/ 10. 1016/j. pmats ci. 2006. 02. 003.
  • [14] Tridello A, Fiocchi J, Biffi CA, Chiandussi G, Rossetto M, Tuissi A, Paolino DS. Influence of the annealing and defects on the VHCF behavior of an SLM AlSi10Mg alloy. Fatigue Fract Eng Mater Struct. 2019. https:// doi. org/ 10. 1111/ ffe. 13123.
  • [15] Salmi A, Atzeni E, Iuliano L, Galati M. Experimental analysis of residual stresses on AlSi10Mg parts produced by means of selective laser melting (SLM). In Proceedings of the procedia CIRP; 2017.
  • [16] Ali H, Ghadbeigi H, Mumtaz K. Processing parameter effects on residual stress and mechanical properties of selective laser melted Ti6Al4V. J Mater Eng Perform. 2018. https:// doi. org/ 10. 1007/ s11665- 018- 3477-5.
  • [17] Salmi A, Atzeni E. History of residual stresses during the production phases of AlSi10Mg parts processed by powder bed additive manufacturing technology. Virtual Phys Prototyp. 2017. https:// doi. org/ 10. 1080/ 17452 759. 2017. 13104 39.
  • [18] Schneller W, Leitner M, Pomberger S, Springer S, Beter F, Grün F. Effect of post treatment on the microstructure, surface roughness and residual stress regarding the fatigue strength of selectively laser melted AlSi10Mg structures. J Manuf Mater Process. 2019. https:// doi. org/ 10. 3390/ jmmp3 040089.
  • [19] Fiocchi J, Tuissi A, Bassani P, Biffi CA. Low temperature annealing dedicated to AlSi10Mg selective laser melting products. J Alloys Compd. 2017. https:// doi. org/ 10. 1016/j. jallc om. 2016. 12. 019.
  • [20] Rao JH, Zhang Y, Zhang K, Wu X, Huang A. Selective laser melted Al-7Si-0.6Mg alloy with in-situ precipitation via platform heating for residual strain removal. Mater Des. 2019;182:108005. https:// doi. org/ 10. 1016/j. matdes. 2019. 108005.
  • [21] Snopińśki P, Tański T, Matus K, Rusz S. Microstructure, grain refinement and hardness of Al–3%Mg aluminium alloy processed by ECAP with helical die. Arch Civ Mech Eng. 2019. https:// doi. org/ 10. 1016/j. acme. 2018. 11. 003.
  • [22] Snopiński P, Tański T, Gołombek K, Rusz S, Hilser O, Donič T, Nuckowski PM, Benedyk M. Strengthening of AA5754 aluminum alloy by DRECE process followed by annealing response investigation. Materials (Basel). 2020;13:301. https:// doi. org/ 10. 3390/ ma130 20301.
  • [23] Snopiński P, Król M. Microstructure, mechanical properties and strengthening mechanism analysis in an AlMg5 aluminium alloy processed by ECAP and subsequent ageing. Metals (Basel). 2018. https:// doi. org/ 10. 3390/ met81 10969.
  • [24] Król M, Snopiński P, Tomiczek B, Tański T, Pakieła W, Sitek W. Structure and properties of an Al alloy in as-cast state and after laser treatment. Proc Est Acad Sci. 2016;65:107–16. https:// doi. org/ 10. 3176/ proc. 2016.2. 07.
  • [25] Trevisan F, Calignano F, Lorusso M, Pakkanen J, Aversa A, Ambrosio EP, Lombardi M, Fino P, Manfredi D. On the selective laser melting (SLM) of the AlSi10Mg alloy: process, microstructure, and mechanical properties. Materials (Basel). 2017;10(1):76.
  • [26] Pauly S, Löber L, Petters R, Stoica M, Scudino S, Kühn U, Eckert J. Processing metallic glasses by selective laser melting. Mater Today. 2013. https:// doi. org/ 10. 1016/j. mattod. 2013. 01. 018.
  • [27] Aboulkhair NT, Tuck C, Ashcroft I, Maskery I, Everitt NM. On the precipitation hardening of selective laser melted AlSi10Mg. Metall Mater Trans A Phys Metall Mater Sci. 2015;46:3337–41. https:// doi. org/ 10. 1007/ s11661- 015- 2980-7.
  • [28] Iturrioz A, Gil E, Petite MM, Garciandia F, Mancisidor AM, San Sebastian M. Selective laser melting of AlSi10Mg alloy: influence of heat treatment condition on mechanical properties and microstructure. Weld World. 2018. https:// doi. org/ 10. 1007/ s40194- 018- 0592-8.
  • [29] Li W, Li S, Liu J, Zhang A, Zhou Y, Wei Q, Yan C, Shi Y. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism. Mater Sci Eng A. 2016. https:// doi. org/ 10. 1016/j. msea. 2016. 03. 088.
  • [30] Maeshima T, Oh-ishi K. Solute clustering and supersaturated solid solution of AlSi10Mg alloy fabricated by selective laser melting. Heliyon. 2019. https:// doi. org/ 10. 1016/j. heliy on. 2019. e01186.
  • [31] Ma A, Saito N, Takagi M, Nishida Y, Iwata H, Suzuki K, Shigematsu I, Watazu A. Effect of severe plastic deformation on tensile properties of a cast Al-11 mass% Si alloy. Mater Sci Eng A. 2005. https:// doi. org/ 10. 1016/j. msea. 2004. 12. 038.
  • [32] Ma P, Prashanth K, Scudino S, Jia Y, Wang H, Zou C, Wei Z, Eckert J. Influence of annealing on mechanical properties of Al-20Si processed by selective laser melting. Metals (Basel). 2014. https:// doi. org/ 10. 3390/ met40 10028.
  • [33] Zhang C, Zhu H, Liao H, Cheng Y, Hu Z, Zeng X. Effect of heat treatments on fatigue property of selective laser melting AlSi10Mg. Int J Fatigue. 2018. https:// doi. org/ 10. 1016/j. ijfat igue. 2018. 07. 016.
  • [34] Gao H, Huang Y, Nix WD, Hutchinson JW. Mechanism-based strain gradient plasticity - I. Theory J Mech Phys Solids. 1999. https:// doi. org/ 10. 1016/ S0022- 5096(98) 00103-3.
  • [35] Muñoz Morris MA, Gutierrez-Urrutia I, Morris DG. The effect of geometrically necessary dislocations on grain refinement during severe plastic deformation and subsequent annealing of Al-7% Si. Mater Sci Eng A. 2008;493:141–7. https:// doi. org/ 10. 1016/j. msea. 2007. 07. 096.
  • [36] Song D, Wang G, Zhou Z, Klu EE, Gao B, Ma A, Wu Y, Sun J, Jiang J, Ma X. Developing a high-strength Al–11Si alloy with improved ductility by combining ECAP and cryorolling. Mater Sci Eng A. 2020. https:// doi. org/ 10. 1016/j. msea. 2019. 138880.
  • [37] Regina Cardoso K, Muñoz-Morris MA, Valdés León K, Morris DG. Room and high temperature ECAP processing of Al-10%Si alloy. Mater Sci Eng A. 2013;587:387–96. https:// doi. org/ 10. 1016/j. msea. 2013. 09. 006.
  • [38] Zribi Z, Ktari HH, Herbst F, Optasanu V, Njah N. EBSD, XRD and SRS characterization of a casting Al-7wt%Si alloy processed by equal channel angular extrusion: dislocation density evaluation. Mater Charact. 2019. https:// doi. org/ 10. 1016/j. match ar. 2019. 04. 044.
  • [39] Gutierrez-Urrutia I, Muñoz-Morris MA, Morris DG. Contribution of microstructural parameters to strengthening in an ultrafine-grained Al-7% Si alloy processed by severe deformation. Acta Mater. 2007. https:// doi. org/ 10. 1016/j. actam at. 2006. 09. 037.
  • [40] Haghdadi N, Zarei-Hanzaki A, Abedi HR, Abou-Ras D, Kawasaki M, Zhilyaev AP. Evolution of microstructure and mechanical properties in a hypoeutectic Al-Si-Mg alloy processed by accumulative back extrusion. Mater Sci Eng A. 2016. https:// doi. org/ 10. 1016/j. msea. 2015. 10. 066.
  • [41] Gerberich WW, Mook WM, Cordill MJ, Carter CB, Perrey CR, Heberlein JV, Girshick SL. Reverse plasticity in single crystal silicon nanospheres. Int J Plast. 2005. https:// doi. org/ 10. 1016/j. ijplas. 2005. 03. 001.
  • [42] Cho KT, Yoo S, Lim KM, Kim HS, Lee WB. Effect of Si content on surface hardening of Al-Si alloy by shot peening treatment. In: Proceedings of the journal of alloys and compounds; 2011.
  • [43] Ashby MF. The deformation of plastically non-homogeneous materials. Philos Mag. 1970. https:// doi. org/ 10. 1080/ 14786 43700 82384 26.
  • [44] Toth L.S.; Gu C.F.; Beausir B.; Fundenberger J.J.; Hoffman M. Geometrically necessary dislocations favor the Taylor uniform deformation mode in ultra-fine-grained polycrystals. Acta Mater. 2016. https:// doi. org/ 10. 1016/j. actam at. 2016. 06. 062.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-925b68e9-2a98-4902-a017-2cf2bcffdbb0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.