PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synteza nowych nanokompozytów chitozan/modyfikowany zeolit i ich wpływ na właściwości mechaniczne zapraw cementowych

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Synthesis of novel chitosan/modified zeolite nanocomposites and their effect on the mechanical properties of cement mortars
Języki publikacji
PL EN
Abstrakty
PL
W pracy przedstawiono nowy nanokompozyt zawierający biodegradowalny chitozan [CS] i modyfikowany zeolit [mZeo] jako eko-nanododatek do cementu oraz oceniono jego wpływ na właściwości mechaniczne zapraw cementowych. Proponowany nanokompozyt otrzymano dzięki synergicznej metodzie sonikacji mikrofalowej, a morfologię powierzchni i skład chemiczny nanokompozytów mZeo i CS/mZeo określono za pomocą SEM, FTIR, XRF i BET. Zbadano wytrzymałość na ściskanie i zginanie zapraw cementowych zawierających mZeo i CS/mZeo w ilości 0, 0,2, 0,5, 1 i 2 % masy cementu. Wyniki badań doświadczalnych wykazały poprawę wytrzymałości zapraw zawierających proponowany nanokompozyt. W niniejszej pracy po raz pierwszy podjęto próbę zastosowania zeolitu w nanoskali w kompozytach cementowych, a uzyskane dotychczas wyniki są bardzo obiecujące. Stwierdza się zatem, że proponowany nanokompozyt ma duży potencjał do zastosowania jako alternatywny eko-nanododatek do kompozytów cementowych.
EN
In this paper, a novel nanocomposite containing biodegradable chitosan [CS] and modified zeolite [mZeo] was introduced as a cement eco-nano additive and its effects on the mechanical properties of cement mortars were evaluated. The proposed nanocomposite was prepared by using a synergistic sonication-microwave method. The surface morphology and chemical compositions of mZeo and CS/mZeo nanocomposites were determined using SEM, FTIR, XRF, and BET. Compressive and flexural strength of cement mortars containing mZeo and CS/mZeo in ratios of 0%, 0.2%, 0.5%, 1% and 2% by mass, were investigated. Experimental results showed a significant improvement in the mechanical properties of mortars containing the proposed nanocomposite. The use of nanoscale zeolite in cementitious composites was attempted for the first time within this study and the results so far have been very promising. Therefore, it is concluded that the proposed nanocomposite has great potential to be used as an alternative eco-nano additive, for cementitious composites.
Czasopismo
Rocznik
Strony
531--544
Opis fizyczny
Bibliogr. 41 poz., il., tab.
Twórcy
  • Department of Chemistry, Istanbul University-Cerrahpaşa, Faculty of Engineering, Istanbul, Turkey
  • Department of Civil Engineering, Maltepe University, Istanbul, Turkey
  • Department of Civil Engineering, Maltepe University, Istanbul, Turkey
  • Department of Civil Engineering, Maltepe University, Istanbul, Turkey
autor
  • Department of Civil Engineering, Maltepe University, Istanbul, Turkey
Bibliografia
  • 1. T. Perraki, G. Kakali, F. Kontoleon, The effect of natural zeolites on the early hydration of Portland cement. Microporous Mesoporous Mater. 61(1-3), 205-12 (2003). https://doi.org/10.1016/S1387-1811(03)00369-X
  • 2. Y. Rahbar, S.Y. Mousavi, H.D. Nasserabadi, Performance of high-strength concrete made with binary and ternary blends of natural zeolite and nano-particles in aggressive environment. Rom. J. Mater. 50(4), 521-30 (2020).
  • 3. M. Najimi, J. Sobhani, B. Ahmadi, M. Shekarchi, An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan. Constr. Build. Mater. 35, 1023-33 (2012). https://doi.org/10.1016/j.conbuildmat.2012.04.038
  • 4. E. Vejmelková, D. Koňáková, T. Kulovaná, M. Keppert, J. Žumár, P. Rovnaníková, Z. Keršner, M. Sedlmajer, R. Černý, Engineering properties of concrete containing natural zeolite as supplementary cementitious material: Strength, toughness, durability, and hygrothermal performance. Cem. Concr. Compos. 55, 259-67 (2015). https://doi.org/10.1016/j.cemconcomp.2014.09.013
  • 5. W. Xu, J.J. Chen, J. Wei, B. Zhang, X. Yuan, P. Xu, Q. Yu, J. Ren, Evaluation of inherent factors on flowability, cohesiveness and strength of cementitious mortar in presence of zeolite powder. Constr. Build. Mater. 214, 61-73 (2019). https://doi.org/10.1016/j.conbuildmat.2019.04.115
  • 6. P. Dabić, D. Barbir, Implementation of natural and artificial materials in Portland cement. Hem Ind 74, 147-61 (2020).
  • 7. K. Samimi, S. Kamali-Bernard, A. Akbar Maghsoudi, M. Maghsoudi, H. Siad, Influence of pumice and zeolite on compressive strength, transport properties and resistance to chloride penetration of high strength self-compacting concretes. Constr. Build. Mater. 151, 292-311 (2017). http://dx.doi.org/10.1016/j.conbuildmat.2017.06.071
  • 8. A. Azad, A. Saeedian, S.F. Mousavi, H. Karami, S. Farzin, V.P. Singh, Effect of zeolite and pumice powders on the environmental and physical characteristics of green concrete filters. Constr. Build. Mater. 240, 117931 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117931
  • 9. C.S. Poon, L. Lam, S.C. Kou, Z.S. Lin, A study on the hydration rate of natural zeolite blended cement pastes. Constr. Build. Mater. 13(8), 427-32 (1999). https://doi.org/10.1016/S0950-0618(99)00048-3
  • 10. B. Ahmadi, M. Shekarchi, Use of natural zeolite as a supplementary cementitious material. Cem. Concr. Compos. 32(2), 134-41 (2010). http://dx.doi.org/10.1016/j.cemconcomp.2009.10.006
  • 11. L.E. Burris, M.C.G. Juenger, Effect of calcination on the reactivity of natural clinoptilolite zeolites used as supplementary cementitious materials. Constr. Build. Mater. 258, 119988 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119988
  • 12. A. Erfanimanesh, M.K. Sharbatdar, Mechanical and microstructural characteristics of geopolymer paste, mortar, and concrete containing local zeolite and slag activated by sodium carbonate. J. Build. Eng. 32, 101781 (2020). https://doi.org/10.1016/j.jobe.2020.101781
  • 13. A.W. Ajmal, F. Masood, T. Yasin, Influence of sepiolite on thermal, mechanical and biodegradation properties of poly-3-hydroxybutyrate-co-3-hydroxyvalerate nanocomposites. Appl. Clay Sci. 156, 11-19 (2018). https://doi.org/10.1016/j.clay.2018.01.010
  • 14. M. Koosha, S. Hamedi, Intelligent Chitosan/PVA nanocomposite films containing black carrot anthocyanin and bentonite nanoclays with improved mechanical, thermal and antibacterial properties. Prog. Org. Coatings 127, 338-47 (2019). https://doi.org/10.1016/j.porgcoat.2018.11.028
  • 15. M.R. Rahman, S. Hamdan, J.C.H. Lai, M. Jawaid, F.A. bin M. Yusof, Physico-mechanical, thermal and morphological properties of furfuryl alcohol/2-ethylhexyl methacrylate/halloysite nanoclay wood polymer nanocomposites (WPNCs). Heliyon 3(7), 342 (2017). http://doi.org/10.1016/j.heliyon.2017.e00342
  • 16. Y. Zhang, Q. Liu, S. Zhang, Y. Zhang, H. Cheng, Gas barrier properties and mechanism of kaolin/styrene-butadiene rubber nanocomposites. Appl. Clay Sci. 111, 37-43 (2015). https://doi.org/10.1016/j.clay.2015.03.001
  • 17. T.P. Chang, J.Y. Shih, K.M. Yang, T.C. Hsiao, Material properties of portland cement paste with nano-montmorillonite. J. Mater. Sci. 42, 7478-87 (2007). https://doi.org/10.1007/s10853-006-1462-0
  • 18. S.M.A. El-Gamal, M.S. Amin, M. Ramadan, Hydration characteristics and compressive strength of hardened cement pastes containing nanometakaolin. HBRC J. 13(1), 144-21 (2017). https://doi.org/10.1016/j.hbrcj.2014.11.008
  • 19. T.T. Haw, F. Hart, A. Rashidi, P. Pasbakhsh, Sustainable cementitious composites reinforced with metakaolin and halloysite nanotubes for construction and building applications. Appl. Clay Sci. 188, 105533 (2020). https://doi.org/10.1016/j.clay.2020.105533
  • 20. F. Piri, A. Mollahosseini, A. Khadir, M. Milani Hosseini, Enhanced adsorption of dyes on microwave-assisted synthesized magnetic zeolite-hydroxyapatite nanocomposite. J. Environ. Chem. Eng. 7(5), 103338 (2019). https://doi.org/10.1016/j.jece.2019.103338
  • 21. Z. Zhou, J. Yang, Y. Zhang, L. Chang, W. Sun, J. Wang, NaA zeolite/carbon nanocomposite thin films with high permeance for CO2/N2 separation. Sep. Purif. Technol. 55(3), 392-95 (2007). https://doi.org/10.1016/j.seppur.2006.12.009
  • 22. A.H. Jawad, A.S. Abdulhameed, A. Reghioua, Z.M. Yaseen, Zwitterion composite chitosan-epichlorohydrin/zeolite for adsorption of methylene blue and reactive red 120 dyes. Int. J. Biol. Macromol. 163, 756-65 (2020). https://doi.org/10.1016/j.ijbiomac.2020.07.014
  • 23. S. Salehi, S. Alijani, M. Anbia, Enhanced adsorption properties of zirconium modified chitosan-zeolite nanocomposites for vanadium ion removal. Int. J. Biol. Macromol. 164, 105-120 (2020). https://doi.org/10.1016/j.ijbiomac.2020.07.055
  • 24. M. Vakili, A. Mojiri, T. Kindaichi, G. Cagnetta, J. Yuan, B. Wang, A.S. Giwa, Cross-linked chitosan/zeolite as a fixed-bed column for organic micropollutants removal from aqueous solution, optimization with RSM and artificial neural network. J. Environ. Manage. 250, 109434 (2019). https://doi.org/10.1016/j.jenvman.2019.109434
  • 25. ASTM international. C1437 - Standard test method for flow of hydraulic cement mortar. ASTM Int. 2013.
  • 26. TSI. TS EN 196-1 - Methods of Testing cement - Part 1: Determination of Strength. Ankara, Turkey; 2016.
  • 27. S.K. Jesudoss , J.J. Vijaya, K. Kaviyarasu, L.J. Kennedy, R. Jothi Ramalingam, H.A. Al-Lohedan, Anti-cancer activity of hierarchical ZSM-5 zeolites synthesized from rice-based waste materials. RSC Adv. 8, 481-90, (2018). https://doi.org/10.1039/C7RA11763A
  • 28. S. Kumar, K. Prasad, J.M. Gil, A.J.F.N. Sobral, J. Koh, Mesoporous zeolite-chitosan composite for enhanced capture and catalytic activity in chemical fixation of CO2. Carbohydr. Polym. 198, 401-6 (2018). https://doi.org/10.1016/j.carbpol.2018.06.100
  • 29. Z.Q. Wang, Y.P. Zhao, Z.P. Huang, The effects of surface tension on the elastic properties of nano structures. Int. J. Eng. Sci. 48(2), 140-50 (2010). https://doi.org/10.1016/j.ijengsci.2009.07.007
  • 30. S.G. Mogilevskaya, S.L. Crouch, A. La Grotta, H.K. Stolarski, The effects of surface elasticity and surface tension on the transverse overall elastic behavior of unidirectional nano-composites. Compos. Sci. Technol. 70(3), 427-34 (2010). https://doi.org/10.1016/j.compscitech.2009.11.012
  • 31. H. Ramirez Mendoza, J. Jordens, M. Valdez Lancinha Pereira, C. Lutz, T. Van Gerven, Effects of ultrasonic irradiation on crystallization kinetics, morphological and structural properties of zeolite FAU. Ultrason Sonochem. 64 (2020). https://doi.org/10.1016/j.ultsonch.2020.105010
  • 32. E.P. Ng, H. Awala, J.P. Ghoy, A. Vicente, T.C. Ling, Y.H. Ng, S. Mintova, F. Adam, Effects of ultrasonic irradiation on crystallization and structural properties of EMT-type zeolite nanocrystals. Mater. Chem. Phys. 159, 38-45 (2015). https://doi.org/10.1016/j.matchemphys.2015.03.047
  • 33. J. Talebi, R. Halladj, S. Askari, Sonochemical synthesis of silver nanoparticles in Y-zeolite substrate. J. Mater. Sci. 45, 3318-24 (2010). https://doi.org/10.1007/s10853-010-4349-z
  • 34. M. Bielawska, A. Chodzińska, B. Jańczuk, A. Zdziennicka, Determination of CTAB CMC in mixed water+short-chain alcohol solvent by surface tension, conductivity, density and viscosity measurements. Colloids Surfaces A. Physicochem. Eng. Asp. 424, 81-8 (2013). https://doi.org/10.1016/j.colsurfa.2013.02.017
  • 35. S.S. Khaleduzzaman, I.M. Mahbubul, I.M. Shahrul, R. Saidur, Effect of particle concentration, temperature and surfactant on surface tension of nanofluids. Int. Commun. Heat Mass Transf. 49, 110-14 (2013). https://doi.org/10.1016/j.icheatmasstransfer.2013.10.010
  • 36. S. Chuah, Z. Pan, J.G. Sanjayan, C.M. Wang, W.H. Duan, Nano reinforced cement and concrete composites and new perspective from graphene oxide. Constr. Build. Mater. 73, 113-124 (2014).
  • 37. A. Terzić, L. Pezo, N. Mijatović, J. Stojanović, M. Kragović, L. Miličić, L. Andrić, The effect of alternations in mineral additives (zeolite, bentonite, fly ash) on physico-chemical behavior of Portland cement based binders. Constr. Build. Mater. 180, 199-210 (2018). https://doi.org/10.1016/j.conbuildmat.2018. 06.007
  • 38. M. Oltulu, R. Şahin, Single and combined effects of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strength and capillary permeability of cement mortar containing silica fume. Mater. Sci. Eng. A. 528(22-23), 7012-19 (2011). https://doi.org/10.1016/j.msea.2011.05.054
  • 39. N. Farzadnia, A.A. Abang Ali, R. Demirboga, M.P. Anwar, Effect of halloysite nanoclay on mechanical properties, thermal behavior and microstructure of cement mortars. Cem. Concr. Res. 48, 97-104 (2013). http://dx.doi.org/10.1016/j.cemconres.2013.03.005
  • 40. S. Papatzani, Effect of nanosilica and montmorillonite nanoclay particles on cement hydration and microstructure. Mater. Sci. Technol. 32(2), 138-53 (2016). https://doi.org/10.1179/1743284715Y.0000000067
  • 41. X. He, X. Shi, Chloride permeability and microstructure of portland cement mortars incorporating nanomaterials. Transp. Res. Rec. J. Transp. Res Board 2070(1), 13-21 (2008). https://doi.org/10.3141/2070-03
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-925748fc-77f6-4c5e-8f98-39d2aab95636
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.