PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimisation of the parameters of a vibration damper installed on a historic bridge

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents theoretical analyses of renovating a historical bridge in order to decrease stresses. The installation of additional equipment, including a vibration absorber, is relatively easy to perform if such a need is indicated by the current bridge diagnostics or the monitoring of the structure’s vibrations. Moreover, absorbers could be mounted in such a way as not to alter the appearance of the historic structure. The authors focused on the problem of optimising the cooperation between a dynamic vibration absorber (DVA) and a structure under dynamic load moving with constant velocity. A simple degree of freedom (SDOF) system – as a model of the absorber and a multi-degree of freedom (MDOF) system – as the primary structure, were adopted in the calculations. Every force is regarded as a random variable, as well as interarrivals of moving forces. Two different situations and solutions were presented. The first case is when the stream of moving forces with a constant velocity is modelled as the filtered Poisson process. The second one when one of the forces is located in the point of the beam in which the response of the beam has the maximum value.
Rocznik
Strony
93--101
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
  • Associate Prof.; Wroclaw University of Science and Technology, Faculty of Civil Engineering, 50-370 Wroclaw, Poland
autor
  • PhD; Wroclaw University of Science and Technology, Faculty of Civil Engineering, 50-370 Wroclaw, Poland
Bibliografia
  • [1] Frahm H. (1911). Device for damping vibrations of bodies. United States Patent. 3576–3580.
  • [2] Ormondroyd J., Den Hartog J.P. (1928). The theory of the dynamic vibration absorber. Transactions of ASME. Journal of Applied Mechanics, 50(7), 9–22.
  • [3] Dallard P., Fitzpatrick T., Flint A., Low A., Smith R.R., Willford M., Roche M. (2001). London Millennium Bridge: Pedestrian-Induced Lateral Vibration. Journal of Bridge Engineering, 6(6), 412–417.
  • [4] Majcher K., Wójcicki Z. (2014). Kinematically excited parametric vibration of a tall building model with a TMD. Pt. 1. Numerical analyses. Archives of Civil and Mechanical Engineering. 14(1), 204–217.
  • [5] Kuras P., Ortyl Ł., Owerko T., Kocierz R., Kędzierski M., Podstolak P. (2014). Analysis of effectiveness of steel chimneys vibration dampers using surveying methods. PAK. 60(12).
  • [6] Shemshadi M., Karimi M., Veysi F. (2020). A simple method to design and analyze dynamic vibration absorber of pipeline structure using dimensional analysis. Hindawi Shock and Vibration. Article ID 2478371. doi.org/10.1155/2020/2478371.
  • [7] Christenson R. E., Hoque S. (2011). Reducing fatigue in wind-excited support structures of traffic signals with innovative vibration absorber. Transportation Research Record Journal of the Transportation Research Board, 2251(1). 16–23. doi.org/10.3141/2251-02.
  • [8] Nishihara O., Asami T. (2002). Closed-form solutions to the exact optimizations of dynamic vibration absorbers (minimizations of the maximum amplitude magnification factors). Transactions of ASME Journal of Vibration and Acoustics. 124(4). 576–582. doi.org/10.1115/1.1500335.
  • [9] Yang F., Sedaghati R., Esmailzadeh E., (2021). Vibration suppression of structures using tuned mass damper technology: A state-of-the-art review. Journal of Vibration and Control, 1. 1–25. doi: 10.1177/1077546320984305.
  • [10] Yoon G. H., Choi H., So H. (2021). Development and optimization of a resonance-based mechanical dynamic absorber structure for multiple frequencies. Journal of Low Frequency Noise. Vibration and Active Control. 40(2). 880–897. doi.org/10.1177/1461348419855533.
  • [11] Soltani P., Deraemaeker A. (2021). Pendulum tuned mass dampers and tuned mass dampers: Analogy and optimum parameters for various combinations of response and excitation parameters. Journal of Vibration and Control, 28(15–16), 2004–2019. doi.org/10.1177/10775463211003414.
  • [12] Leimeister, M.; Kolios, A.; Collu, M. (2021). Development of a Framework for Wind Turbine Design and Optimization. Modelling, 2, 105–128. doi.org/10.3390/modelling2010006.
  • [13] Du Y., Zou T., Pang F., Hu C., Ma Y., Li H. (2023). Design method for distributed dynamic vibration absorbers of stiffened plate under different boundary constraints. Thin-Walled Structures. 185. 110494. doi.org/10.1016/j.tws.2022.110494.
  • [14] Contento A., Di Egidio A., Pagliaro S. (2022). Dynamic and seismic protection of rigid-block-like structures with Combined Dynamic Mass Absorbers. Engineering Structures. 272. doi.org/10.1016/j.engstruct.2022.114999.
  • [15] Grosel J., Podwórna M. (2021). Optimisation of absorber parameters in the case of stochastic vibrations in a bridge with a deck platform for servicing pipelines. Studia Geotechnica et Mechanica, 43, 1–9. DOI:10.2478/sgem-2021-0030.
  • [16] Nasr, A., Mrad, C., Nasri, R. (2022). Explicit Formulas for Optimal Parameters of Friction Dynamic Vibration Absorber Attached to a Damped System Under Various Excitations. Journal of Vibration Engineering & Technology. doi.org/10.1007/s42417-022-00560-6.
  • [17] Podwórna M., Śniady P., Grosel J. (2021). Random vibrations of a structure modified by damped absorbers. Probabilistic Engineering Mechanics. 66. doi.org/10.1016/j.probengmech.2021.103151.
  • [18] Barredo E., Larios J.G.M., Mayen J., Flores-Hernandez A.A., Colin J. (2019). Optimal design for high-performance passive dynamic vibration absorbers under random vibration. Engineering Structures 2019. 195. 469–489. doi.org/10.1016/j.engstruct.2019.05.105.
  • [19] Laurentiu M., Agathoklis G. (2014). Optimal design of novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems, Probabilistic Engineering Mechanics. 38. 156–164. doi.org/10.1016/j.probengmech.2014.03.007.
  • [20] Shum K.M. (2015). Tuned vibration absorbers with nonlinear viscous damping for damped structures under random load. Journal of Sound and Vibrations, 346, 70–80. doi.org/10.1016/j.jsv.2015.02.003.
  • [21] Javidialesaadi A., Wierschem N.E. (2018). Optimal design of rotational inertial double tuned mass dampers under random excitation, Engineering Structures. 165. 412–421. doi.org/10.1016/j.engstruct.2018.03.033.
  • [22] Martins L. A., Lara Molina F. A., Koroishi E. H., Cavalini A. Ap. Jr. (2020). Optimal design of a dynamic vibration absorber with uncertainties, Journal of Vibration Engineering & Technologies, 8, 133–140. doi.org/10.1007/s42417-019-00084-6.
  • [23] Silva A.G., Cavalini A. A. Jr., Steffen V. Jr. (2016). Fuzzy robust design of dynamic vibration absorbers. Hindawi Shock and Vibration. Volume 2016. Article ID 2081518. doi.org/10.1155/2016/2081518.
  • [24] Śniady P. (2020). Fundamentals of stochastic structure dynamics (in Polish), Oficyna Wydawnicza Politechniki Wrocławskiej.
  • [25] Wolfram Mathematica 13. Wolfram Research ©Copyright 1988–2023.
  • [26] Langer J. (1980). Dynamics of structures (in Polish). Wydawnictwo Politechniki Wrocławskiej.
  • [27] Mielczarek M., Nowogońska B. (2021). Technical problems in the renovation of historic bridges. Case study – road bridge in Cigacice. Civil and Environmental Engineering Reports, 31(1). 70–78. DOI: 10.2478/ceer-2021-0005.
  • [28] Dawczyński S., Brol J. (2016). Laboratory tests of old reinforced concrete precast bridge beams. Architecture, Civil Engineering, Environment, 9(2). 57–63. https://doi.org/10.21307/acee-2016-022.
  • [29] Bajad, M.N. (2022). Analytical approach for damping model. Asian Journal of Civil Engineering. https://doi.org/10.1007/s42107-022-00491-3.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-925530f3-76fe-410c-a958-5648d80e6766
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.