PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Obtaining microstructures of hot-rolled dual-phase steel plates

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work presents a novel methodology for directly obtaining dual-phase (DP) steels from the hot rolling process. The effect of chemical composition on the behavior of continuous cooling transformation diagrams was investigated using JMatPro software. The results of the computational study were validated experimentally. These results were used to obtain a DP steel from AISI-1018 steel, which was processed by hot rolling at 1,000°C and rolling finishing temperatures ranging from 953 to 744°C, with deformation degrees of 10–40%, and controlled cooling at a rate of 30°C s⁻¹. The microstructure was characterized using scanning electron microscopy, and the mechanical properties were evaluated through microhardness measurements, uniaxial tension tests, and impact tests. Results show that the percentage of the phases strongly depended on the processing conditions: finishing temperatures T > Ac3, and deformations of 10–20%, and they promote microstructures composed of ferrite and martensite, predominantly with α′ > 63%. In contrast, with deformations of 30–40% and finishing temperatures close to Ac1, a better phase equilibrium (55%α–45%α′) results, which generates ultimate tensile strength values greater than 930 MPa and elongation of 32%. The proposed methodology represents a low-cost alternative processing route for obtaining DP steels without the heat treatment stage after hot rolling, compared to those produced with a large amount of microalloying and high processing. This methodology yields significant energy and cost savings, making it an attractive manufacturing option for in-line steel production, which can be utilized for the manufacture of automotive components.
Wydawca
Rocznik
Strony
101--112
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • TecNM/I.T. Morelia, Av. Tecnológico 1500, Morelia Michoacán, México
autor
  • TecNM/I.T. Morelia, Av. Tecnológico 1500, Morelia Michoacán, México
  • TecNM/I.T. Morelia, Av. Tecnológico 1500, Morelia Michoacán, México
autor
  • TecNM/I.T. Morelia, Av. Tecnológico 1500, Morelia Michoacán, México
  • Universidad Autónoma de San Luis Potosí, Instituto de Metalurgia, Av. Sierra Leona 550, Lomas 2da Sección, San Luis Potosí, Mexico
  • TecNM/I.T. Morelia, Av. Tecnológico 1500, Morelia Michoacán, México
Bibliografia
  • [1] Schemmann, L., Zaefferer, S., Raabe, D., Friedel, F., Mattissen, D., Alloying effects on microstructure formation of dual phase steels, Acta Mater., 2015, 95: 386–398. doi:10.1016/j.actamat.2015.05.005
  • [2] Balbi, M., Alvarez Armas, I., Armas, A., Effect of holding time at an intercritical temperature on the microstructure and tensile properties of a ferrite-martensite dual phase steel, Mater. Sci. Eng. A., 2018, 733: 1–8. doi:10.1016/j.msea.2018.07.029
  • [3] Allain, S., Pushkareva, I., Texeira, J., Goune, M., Scott, C., Dual-phase steels: The first family of advanced high strength steel, Encycl. Mater.: Met. Alloys, 2022, 2: 37–62. doi:10.1016/B978-0-12-819726-4.00057-0
  • [4] Chen, H.C., Era, H., Shimizu, M., Effect of phosphorus on the formation of retained austenite and mechanical-properties in Si-containing low-carbon steel sheet, Metall. Mater. Trans. A., 1987, 20: 437–445. doi:10.1007/BF02653923
  • [5] Mazaheri, Y., Kermanpur, A., Najafizadeh, A., A novel route for development of ultrahigh strength dual phase steels, Mater. Sci. Eng. A., 2014, 619: 1–11. doi:10.1016/j.msea.2014.09.058
  • [6] Zhang, M.D., Hu, J., Cao, W.Q., Dong, H., Microstructure and mechanical properties of high strength and high toughness micro-laminated dual phase steels, Mater. Sci. Eng. A., 2014, 618: 168–175. doi:10.1016/j.msea.2014.08.073
  • [7] Angeli, J., Fuereder, E., Panholzer, M., Kneissl, A., Etching techniques for characterizing the phases of low-alloy dual-phase and TRIP steels, Pract. Metallogr., 2013, 43: 489–506. doi:10.3139/147.100315
  • [8] Reza, M., Jamaati, R., Jamshidi Hamed, A., A new method to produce dual-phase steel, Mater. Sci. Eng. A., 2021, 803: 40–155. doi:10.1016/j.msea.2020.140695
  • [9] Mazaheri, Y., Kermanpur, A., Najafizadeh, A., Saeidi, N., Effects of initial microstructure and thermomechanical processing parameters on microstructures and mechanical properties of ultrafine grained dual phase steel, Mater. Sci. Eng. A., 2014, 612: 54–62. doi:10.1016/j.msea.2014.06.031
  • [10] Fawad, T., Nausheen, N., Rasheed, A., Ashraf, A., Evolution of microstructure and mechanical properties during quenching and tempering of ultrahigh strength 0.3C Si–Mn–Cr–Mo low alloy steel, J. Mater. Sci., 2010, 45: 1695–1708. doi:10.1007/s10853-009-4160-x
  • [11] Roohollah, J., Reza, M., Amirkhanlou, S., Hossein, E., Microstructural evolution of nanostructured steel based composite fabricated by accumulative roll bonding, Mater. Sci. Eng. A., 2015, 639: 298–306. doi:10.1016/j.msea.2015.05.025
  • [12] Nikkhah, S., Mirzadeh, H., Zamani, M., Fine tuning the mechanical properties of dual phase steel via thermomechanical processing of cold rolling and intercritical annealing, Mater. Chem. Phys., 2019, 230: 1–8. doi:10.1016/j.matchemphys.2019.03.053
  • [13] Asadi, M., Palkowski, H., Influence of the hot rolling process on the mechanical behavior of dual phase steels, In: L. Zhang, A. Joseph, A. Citfja (eds.), Hot rolling processes on dual phase steels, Materials Performance and Characterization, 2012, pp. 1–16. doi:10.1520/MPC20160120
  • [14] Dawki, H., Gamal, A., EI-Kolaly, O., A review paper on the development of dual phase steel, J. Heavy Met. Tox. Dis., 2020, 3: 2–15. doi:10.21767/2473-6457.10030
  • [15] Cai, X., Garrat-Reed, A., Owen, W.S., The Development of some dual-phase steel structures from different starting microstructures, Metall. Trans. A., 1985, 16: 543–557. doi:10.1007/BF02814228
  • [16] Schemmann, L., Zaefferer, S., Raabe, D., Friedel, F., Mattisenn, D., Alloying effects on microstructure of dual phase, Acta Mater., 2008, 95: 386–398. doi:10.1016/j.actamat.2015.05.005
  • [17] Suwanpinij, P., Rudnizki, J., Prahl, U., Bleck, W., Investigation of the effect of deformation on γ → α phase transformation kinetics in hot-rolled dual phase steel by phase field approach, Steel Res. Int., 2010, 9: 616–622. doi:10.2374/SRI09SP047
  • [18] Tasan, C., Diehl, M., Bechtold, M., Raabe, D., An overview of Dual-Phase steels: Advances in microstructure-oriented processing and micromechanically guided design, Annu. Rev. Mater. Res., 2015, 45: 391–431. doi:10.1146/annurev-matsci-070214-021103
  • [19] Ruiz, A., Aguilar, A., Hernández, C., Ramos, A., Solorio, G., Preciado, R., Impingement density analysis on heat transfer and the appearance of edge cracks in conventional slab using hydraulic nozzles, Metals, 2022, 12: 2–10. doi:10.3390/met12010108
  • [20] Akbarpour, M.R., Effect of ferrite volume fraction on work hardening behavior of high bainite dual phase (DP) steels, Mater. Sci. Eng. A., 2008, 25: 306–310. doi:10.1016/j.msea.2007.05.051
  • [21] Liu, Y., Zhang, L., Du, Y., Di, Y., Liang, D., Atomic mobility, uphill diffusion and pro-eutectic ferrite growth in Fe-Mn-C alloys, Calphad, 2009, 33: 614–623. doi:10.1016/j.calphad.2009.07.002
  • [22] Zeytin, H.K., Kubilay, C., Aydin, H., Investigation of dual phase transformation of commercial low alloy steels: effect of holding time at low inter-critical annealing temperatures, Mater. Lett., 2008, 62: 2651–2653. doi:10.1016/j.matlet.2008.01.037
  • [23] Santos, D.B., Bruzszek, R.K., Rodrigues, P.C.M., Pereloma, E., Formation of ultrafine ferrite microstructure in warm rolled and annealed C-Mn steel, Mater. Sci. Eng. A., 2003, 346:189–195. doi:10.1016/S0921-5093(02)00519-1.
  • [24] Kang, J.Y., Lee, H.C., Han, S.H., Effect of Al and Mo on the textures and microstructures of dual phases steels, Mater. Sci. Eng. A., 2011, 530: 183–190. doi:10.1016/j.msea.2011.09.071.
  • [25] Zare, A., Ekrami, A., Effect of martensite volume fraction on work hardening behavior of triple phase (TP) steels, Mater. Sci. Eng. A., 2011, 528: 4422–4426. doi:10.1016/j.msea.2011.02.021
  • [26] Kim, N.J., Thomas, G., Effect of morphology on the mechanical behavior of a dual-phase Fe/2Si/ 0.10C steel, Metall. Trans. A., 1981, 12: 483–489. doi:10.1007/BF02648546
  • [27] Hwang, B.C., Cao, T.Y., Shin, S.Y., Kim, S.H., Lee, S.H., Effects of ferrite grain size and martensite volume fraction on dynamic deformation behavior of 0.15 C-2.0 Mn-0.2 Si dual phase steels, Mater. Sci. Technol., 2005, 8: 967–975. doi:10.1179/174328405X47609
  • [28] Badkoobeh, F., Mostaan, H., Rafiei, M., Reza, H., Microstructural characteristics and strengthening mechanisms of ferritic-martensitic dual-phase steels: A review, Metals, 2022, 12: 101–113. doi:10.3390/met12010101
  • [29] Castillo, D., Angarita, I., Rodríguez, R., Microstructural and mechanical characterization of dual phase steels (ferrite-martensite, obtained by thermomechanical process, Rev. Chil. Ing., 2018, 26: 1–9. doi:10.4067/S0718-33052018000300430
  • [30] Calcagnotto, M., Adachi Y., Ponge, D, Raabe, D., Deformation and fracture mechanisms in fine-and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging, Acta Mater., 2011, 59: 658–670. doi:10.1016/j.actamat.2010.10.002
  • [31] Mohan, R., Marschall, C., Cracking instabilities in a low-carbon steel susceptible to dynamic strain aging, Acta Mater., 1998, 48:1933–1948. doi:10.1016/S1359-6454(97)00423-0
  • [32] Rafaee, A., Ataya, S., Ibrahim, S., Effect of dual phase steel processing conditions on the microstructure and mechanicals properties, J. Pet. Min. Eng., 2016, 18: 20–26. doi:10.21608/jpme.2018.37226
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92533949-6572-4725-990f-3a3d632ed84d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.