Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A reaction-diffusion equation an [0, 1] with the heat conductivity κ > 0, a polynomial drift term, and an additive random perturbation is considered. It is shown that if κ tends to infinity, then the corresponding solutions of the equation converge to a process satisfying an ordinary Itô equation.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
63--75
Opis fizyczny
Bibliogr. 6 poz.
Twórcy
autor
- Department of Mathematical Sciences, Sharif University of Technology, Teheran, Iran
Bibliografia
- [1] L. Arnold and M. Theodosopulu, Deterministic limit of the stochastic model of chemical reactions with digusion, Adv. in Appl. Probab. 12 (1980), pp. 367-379.
- [2] S. Cerrai, Smoothing properties of transitions semigroups relative to Banach spaces valued SPDE's, Preprint 19, Scoula Normale Superiore, 1997.
- [3] G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Lecture Note Series 229, Cambridge University Press, Cambridge 1996.
- [4] T. Funaki, Random motion of strings and related stochastic evolution equations, Nagoya Math. J. 89 (1983), pp. 129-193.
- [5] Sz. Peszat, Existence and uniqueness of the solutions for stochastic equations on Banach spaces, Stochastics 55 (1995), pp. 167-193.
- [6] Sh. Zamani, High conductivity limits for reaction-diffusion equations, Preprint 577, Institute of Mathematics, Polish Academy of Sciences, 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92518afd-a2d5-4a00-bd5a-f3b0fa16019d