PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selection of the best phase transformation model for optimization of manufacturing processes of pearlitic steel rails

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Selection of the best model for simulation of manufacturing processes of pearlitic steel rails was the objective of the paper. Achieving a proper balance between its predictive capabilities and computing costs was used as a criterion. Review of the pearlitic transformation models was performed and modification of the JMAK equation was selected for further analysis. Empirical models were developed to describe microstructure and mechanical properties of rails. Dilatometric tests were performed to supply data for identification of the phase transformation model. Physical simulations of various thermal cycles were performed to validate and verify the models. Finite element (FE) simulations of the hot rolling provided distributions of the temperature and the austenite grain size at the cross section of the rail, which were used as an input for modelling of phase transformations during cooling. Accelerated cooling by a cyclic immersion of the rail head in the polymer solution was considered as a case study. Performed simulations confirmed good predictive capabilities of the model.
Rocznik
Strony
535--546
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
  • Institute for Ferrous Metallurgy, ul. K. Miarki 12, Gliwice, Poland
  • Institute for Ferrous Metallurgy, ul. K. Miarki 12, Gliwice, Poland
  • AGH University of Science and Technology, al. Mickiewicza 30, Kraków, 30-059, Poland
autor
  • AGH University of Science and Technology, al. Mickiewicza 30, Kraków, 30-059, Poland
  • ArcelorMittal Poland, Al. Józefa Pilsudskiego 92, Dabrowa Górnicza, 41-308, Poland
  • AGH University of Science and Technology, al. Mickiewicza 30, Kraków, 30-059, Poland
Bibliografia
  • [1] R. Kuziak, T. Zygmunt, A new method of rail head hardening of standard-gauge rails for improved wear and damage resistance, Steel Res. Int. 84 (2013) 13–19.
  • [2] M. Pietrzyk, L. Madej, S. Weglarczyk, Tool for optimal design of manufacturing chain based on metal forming, Ann. CIRP 57 (2008) 309–312.
  • [3] S.S. Sahay, G. Mohapatra, G.E. Totten, Overview of pearlitic rail steel: accelerated cooling, quenching, microstructure, and mechanical properties, J. ASTM Int. 6 (2009) 1–26.
  • [4] P. Pointner, High strength rail steels – the importance of material properties in contact mechanics problems, Wear 265 (2008) 1373–1379.
  • [5] T. Kimura, M. Takemasa, M. Honjo, Development of SP3 rail with high wear resistance and rolling contact fatigueresistance for heavy haul railways, JFE Techn. Rep. 16 (2011) 32–37.
  • [6] G. Li, Z. Liu, L. Chen, X. Hou, Numerical calculation of the comprehensive heat transfer coefficient on the surface of rail in the spray cooling process, J. Metall. Eng. 4 (2015) 13–17.
  • [7] B.-A. Behrens, B. Denkena, F. Charlin, M. Dannenberg, Model based optimization of forging process chains by the use of a Genetic Algorithm, in: G. Hirt, A.E. Tekkaya (Eds.), 10th Int. Conf. on Technology of Plasticity ICTP, Aachen, 2011 25–30.
  • [8] L. Rauch, R. Kuziak, M. Pietrzyk, From high accuracy to high efficiency in simulations of processing of Dual-Phase steels, Metall. Mater. Trans. B 45B (2014) 497–506.
  • [9] L. Rauch, K. Bzowski, K. Perzynski, L. Madej, A. Milenin, M. Pietrzyk, Strategy for the selection of the best phase transformation model for simulation of metals processing, Comput. Methods Mater. Sci. 16 (2016) 224–237.
  • [10] M. Pietrzyk, L. Madej, L. Rauch, D. Szeliga, Computational Materials Engineering: Achieving High Accuracy and Efficiency in Metals Processing Simulations, Elsevier, Amsterdam, 2015.
  • [11] M. Militzer, M.G. Mecozzi, J. Sietsma, S. van der Zwaag, Threedimensional phase field modelling of the austenite-to-ferrite transformation, Acta Mater. 54 (2006) 3961–3972.
  • [12] L. Zhang, C.B. Zhang, Y.M. Wang, S.Q. Wang, H.Q. Ye, A cellular automaton investigation of the transformation from austenite to ferrite during continuous cooling, Acta Mater. 51 (2003) 5519–5527.
  • [13] M. Tong, D. Li, Y. Li, Modeling the austenite–ferrite diffusive transformation during continuous cooling on a mesoscale using Monte Carlo method, Acta Mater. 52 (2004) 1155–1162.
  • [14] M. Pernach, K. Bzowski, L. Rauch, M. Pietrzyk, Analysis of predictive capabilities of multiscale phase transformation models based on the numerical solution of heat transfer and diffusion equations, Int. J. Multisc. Comput. Eng. 15 (2017) 413–430.
  • [15] A.S. Pandit, Theory of the pearlite transformation in steels, PhD thesis, University of Cambridge, 2011.
  • [16] D. Embury, Formation of pearlite in steels, in: E. Pereloma, D. V. Edmonds (Eds.), Phase Transformations in Steels. vol. 1. Fundamentals, Diffusion-controlled Transformations, Woodhead Publishing Ltd, Oxford, 2012 276–310.
  • [17] A.S. Pandit, H.K.D.H. Bhadeshia, Mixed diffusion-controlled growth of pearlite in binary steel, Proc. R. Soc. A 467 (2011) 508–521.
  • [18] K. Han, G.D.W. Smith, D.V. Edmonds, Pearlite phase transformation in Si and V steel, Metall. Mater. Trans. A 26A (1995) 1617–1631.
  • [19] B. Garbarz, F.B. Pickering, Effect of pearlite morphology on impact toughness of eutectoid steel containing vanadium, Mater. Sci. Technol. 4 (1988) 328–334.
  • [20] M. Avrami, Kinetics of Phase Change. I: General Theory, J. Chem. Phys. 7 (1939) 1103–1112.
  • [21] E.B. Hawbolt, B. Chau, J.K. Brimacombe, Kinetics of austenite-pearlite transformation in eutectoid carbon steel, Metall. Mater. Trans. A 14 (1983) 1803–1815.
  • [22] R. Kuziak, Y.-W. Cheng, M. Glowacki, M. Pietrzyk, Modelling of the microstructure and mechanical properties of steels during thermomechanical processing, in: NIST Technical Note 1393, Boulder, 1997.
  • [23] K. Nakajima, M. Apel, I. Steinbach, The role of carbon diffusion in ferrite on the kinetics of cooperative growth of pearlite: a multi-phase field study, Acta Mater. 54 (2006) 3665–3672.
  • [24] M. Pernach, Application of the diffusion equation to modeling phase transformation during cooling of pearlitic steel, Comput. Methods Mater. Sci. 14 (2014) 228–235.
  • [25] B.L. Bramfitt, Structure/property relationships in irons and steels, in: Metals Handbook Desk Edition, 2nd edition, J.R. Davis ASM International, 1998, pp. 153–173.
  • [26] A. Milenin, M. Pernach, L. Rauch, R. Kuziak, T. Zygmunt, M. Pietrzyk, Modelling and optimization of the manufacturing chain for rails, Proc. Eng. 207 (2017) 2101–2106.
  • [27] M. Pietrzyk, R. Kuziak, Modelling phase transformations In steel, in: J. Lin, D. Balint, M. Pietrzyk (Eds.), Microstructure Evolution in Metal Forming Processes, Woodhead Publishing, Oxford, 2012 145–179.
  • [28] A. Gavrus, E. Massoni, J.L. Chenot, An inverse analysis using a finite element model for identification of rheological parameters, J. Mater. Process. Technol. 60 (1996) 447–454.
  • [29] D. Szeliga, J. Gawad, M. Pietrzyk, Inverse analysis for identification of rheological and friction models in metal forming, Comput. Methods Appl. Mech. Eng. 195 (2006) 6778–6798.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-924eaa95-bd1c-42e9-a37c-6dfbed9d08bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.