Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Wpływ architektury łanu kukurydzy na stopień aplikacji i jednorodność dystrybucji wody za pomocą zraszacza
Języki publikacji
Abstrakty
The study evaluated the effects of cultivation under a canopy, concerning plant density, row spacing, and cultivation without a canopy, on the application rate and the uniformity coefficient with different catchcan heights. The experiment was conducted at the Fishery and Aquaculture Technology Farm in the Volta Region of Ghana. Catch-cans were arranged at the heights of 0.5, 1.0, 1.5, and 2.0 m, respectively, and the working pressure varied from 150~250 kPa. The average infiltration rate with the canopy and without it was 31.2 mm h-1 and 37.08 mm h-1 , respectively. Corn under the canopy significantly influenced (p-values 0.001) the infiltration depth before runoff. However, the effect of the cultivation without a canopy was insignificant (p = 0.05). The average application rates obtained under the canopy at the catchcan heights of 0.5, 1.0, 1.5, and 2.0 m were 56.6, 61.4, 68.0, and 52.0 m h-1 , respectively. The maximum and the average uniformity coefficient (Cu) values obtained under the canopy were 79% and 64%, respectively. The average sediment productions (gm-2 ) were 2.0, 2.53, 3.0, 3.63, 5.95 and 70.2, respectively, in the treatments of 40.1 mm·h-1 and duration (Dur) 80 min, 45.2 mm·h-1 and Dur 60 min, with 30.4 mm·h-1 and Dur 110 min, 28.4 mm·h-1 and Dur 120 min, and 59.2 mm·h-1 and Dur 40min.
Celem niniejszej praca jest ocena wpływu łanu, mianowicie gęstości rośliny, odległości między rzędami oraz ocena uprawy bez łanu, na tempo aplikacji oraz współczynnik jednorodności przy różnych wysokościach ustawienia zbiornika. Doświadczenie przeprowadzono na farmie technologii rybołówstwa i akwakultury w rejonie Volta w Ghanie. Zbiorniki umieszczono odpowiednio na wysokości 0,5; 1,0; 1,5 oraz 2,0 metry a ciśnienie robocze wahało się w zakresie 150~250 kPa. Średnie tempo infiltracji pod łanem oraz bez łanu wynosiła odpowiednio 31,2 mm·h-1 oraz 37,08 mm·h-1. Uprawa kukurydzy „pod łanem” miała istotny wpływ (wartości - p 0,001) na głębokość infiltracji zanim nastąpiła ucieczka wody, przy czym wpływ uprawy „bez łanu” był bez znaczenia (p = 0,05). Średni stopień aplikacji osiągnięty pod łanem przy wysokości zbiorników 0,5; 1,0; 1,5 oraz 2 m wyniósł odpowiednio 56,6; 61,4; 68,0; and 52,0 m·h-1. Maksymalny i średni indeks jednorodności osiągnięty pod łanem wyniósł odpowiednio 79 i 64% . Średnia produkcja osadu (g·m-2) wynosiła odpowiednio 2,0; 2,53; 3,0; 3,63; 5.95 oraz 70,2 podczas zabiegów 40,1 mm·h-1 i przy czasie trwania (Dur) 80 min, 45.2 mm·h-1 i czasie trwania 60 min, podczas zabiegu 30,4 mm·h-1 i czasie trwania 110 min, 28.4 mm·h-1 oraz czasie trwania 120 min, oraz 59, 2 mm·h-1 i czasie trwania 40 min.
Czasopismo
Rocznik
Tom
Strony
79--95
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
- Department of Mechanical Engineering, Koforidua Technical University, P. O. Box KF-981, Koforidua, Eastern Region. Ghana
autor
- Department of Mechanical Engineering, Koforidua Technical University, P. O. Box KF-981, Koforidua, Eastern Region. Ghana
autor
- Department of Civil Engineering, Koforidua Technical University, P. O. Box KF-981, Koforidua, Eastern Region, Ghana
autor
- Department of Civil Engineering, Koforidua Technical University, P. O. Box KF-981, Koforidua, Eastern Region, Ghana
autor
- School of Engineering and Technology, Western Illinois University, 1 University Circle, Macomb, IL 61455-1390, USA
autor
- Department of Mechanical Engineering, Koforidua Technical University, P. O. Box KF-981, Koforidua, Eastern Region. Ghana
autor
- Department of Mechanical Engineering, Koforidua Technical University, P. O. Box KF-981, Koforidua, Eastern Region. Ghana
autor
- Department of Agricultural Engineering, University of Ghana, P.O. Box LG 25. Legon, Accra, Ghana
autor
- Department of Mechanical Engineering, Koforidua Technical University, P. O. Box KF-981, Koforidua, Eastern Region. Ghana
autor
- Department of Mechanical Engineering, Kumasi Technical University, Kumasi, Ashanti Region, Ghana
Bibliografia
- Armstrong, C. L., & Mitchell, J. K. (1987). Transformations of rainfall by plant canopies. Transactions of the ASAE, 30(3), 688-696.
- Ayers, J. E., Hutmacher, R. B., Schoneman, R. A., & Dettinger, D. R. (1991). Influence of cotton canopy on sprinkler irrigation uniformity. Transactions of the ASAE, 34(3), 890-896.
- Bertol, I., Schick, J., Bandeira, D. H., Paz-Ferreiro, J., & Vázquez, E. V. (2017). Multifractal and joint multifractal analysis of water and soil losses from erosion plots: A case study under subtropical conditions in Santa Catarina highlands, Brazil. Geoderma, 287, 116-125.
- Bui, E. N., & Box Jr, J. E. (1992). Stemflow, rain throughfall, and erosion under canopies of corn and sorghum. Soil Science Society of America Journal, 56(1), 242-247.
- Carvalho, D. F. D., Eduardo, E. N., Almeida, W. S. D., Santos, L. A., & Alves Sobrinho, T. (2015). Water erosion and soil water infiltration in different stages of corn development and tillage systems. Revista Brasileira de Engenharia Agrícola e Ambiental, 19, 1072-1078. https://doi.org/10.1590/ 1807-1929/
- Fan, J., Oestergaard, K. T., Guyot, A., & Lockington, D. A. (2014). Measuring and modelling rainfall interception losses by a native Banksia woodland and an exotic pine plantation in subtropical coastal Australia. Journal of Hydrology, 515, 156-165.
- Fan, Y., Meijide, A., Lawrence, D.M., Roupsard, O., Carlson, K.M., Chen, H.Y., Röll, A., Niu, F., & Knohl, A. (2019). Reconciling canopy interception parameterization and rainfall forcing frequency in the Community Land Model for simulating evapotranspiration of rainforests and oil palm plantations in Indonesia. Journal of Advances in Modelling Earth Systems,11(3), 732-751.
- Fordjour, A., Zhu, X., Jiang, C., & Liu, J. (2020). Effect of riser height on rotation uniformity and application rate of the dynamic fluidic sprinkler. Irrigation and Drainage, 69(4), 618-632. https://doi.org/10.1002/ird.2462.
- Ghilain, N., Arboleda, A., Barrios, J.M., & Gellens-Meulenberghs, F. (2020). Water interception by canopies for remote sensing-based evapotranspiration models. International Journal of Remote Sensing, 41(8), 2934-2945.
- Gómez, J.A., Giráldez, J.V., & Fereres, E. (2001). Rainfall interception by olive trees in relation to leaf area. Agricultural Water Management, 49(1), 65-76.
- He, Y., Hu, Y., Song, J., & Jiang, X. (2021). Variation of runoff between southern and northern China and their attribution in the Qinling Mountains, China. Ecological Engineering, 7, 106374.
- Jiao, J., Su, D., Han, L., & Wang, Y. (2016). A rainfall interception model for alfalfa canopy under simulated sprinkler irrigation. Water, 8(12), 585.
- Jobbágy, J., Michlian, N., Dacanin, P., & Rigó, I. (2019). Application and the evaluation of performance quality of hose-reel irrigation machine. Acta Technoogica Agriculture, 22(4), 109-114.
- Kermavnar, J., & Vilhar, U. (2017). Canopy precipitation interception in urban forests in relation to stand structure. Urban Ecosystems, 20, 1373-1387.
- Lang, J.B., Wang, J., Li, T.N., & Wang, D.W. (2015). Require high-efficiency of high efficiency watersaving irrigation on equipment under the background of water-saving and grain-increasing action in Heilongjiang Province. Journal of Drainage Irrigation Machinery Engineering, 33(5), 456-460.
- Li, H., Yuan, S. Q., Liu, J. P., Xiang, Q.J., Zhu, X. Y., & Xie, F. Q. (2007). Wall-attachment fluidic sprinkler. Ch. Patent No. 101224444 B.
- Li, Y. F., Liu, J. P., Li, T., & Xu, J. E. (2018). Theoretical model and experiment on the fluidic sprinkler wet radius under multi-factor. Journal of Drainage Irrigation Machinery Engineering, 36(8), 685-689.
- Liang, X. Z., Wu, Y., Chambers, G.R., Schmoldt, L. D., Gao, C., Yan, L. L., Sun, C., &Kennedy, A. J. (2016). Determining climate effects on US total agricultural productivity. National Academy of Sciences, 114(12), 2285-2292.
- Lianhao, L., Xinyue, Z., Xiaodong, Q., & Guiming, L. (2016). Analysis of the decrease of center pivot sprinkling system uniformity and its impact on maize yield. International Journal of Agricultural and Biological Engineering, 9(5), 108-119.
- Lima, J.L., Torfs, P. J. F., & Singhc, V. P. (2002). A mathematical model for evaluating the effect of wind on downward-spraying rainfall simulators. Catena, 46, 221-241.
- Liu, H. J., Kang, Y. H., & Liu, S.P. (2003). Regulation of environmental conditions by sprinkler irrigation and its effect on water use efficiency of winter wheat. Transactions of the China Society of Agricultural Engineering, 19, 46-51.
- Liu, J.P. Zhu, X. Yuan S.Q. & Liu. X F. (2018). Droplet motion model and simulation of a complete fluidic sprinkler. Transactions of the ASABE, 61(4), 1297-1306.
- Llorens, P., & Domingo, F. (2007). Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe. Journal of Hydrology, 335(1-2), 37-54.
- Mathys, N., Klotz, S., Esteves, M., Descroix, L., & Lapetite, J. M. (2005). Runoff and erosion in the Black Marls of the French Alps: observations and measurements at the plot scale. Catena, 63(2-3), 261-281. https://doi.org/10.1016/j.catena.2005.06.010.
- Molle, B. (2002). Characterizing the droplet distribution of an irrigation sprinkler water application. 18th International Congress on Irrigation and Drainage, Montréal, Canada, Volume IA,1-19.
- Prado, G., Colombo, A., & Barreto, A.C. (2019). Water distribution model for center pivot end gun sprinklers. Revista Brasileira de Engenharia Agrícola e Ambiental, 23(7), 477-483.
- Prado, G.D. (2016). Medium distribution from medium-sized sprinkler system set sprinkler systems. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(3), 195-201.
- Ran, Q., Hong, Y., Chen, X., Gao, J., & Ye, S. (2019). Impact of soil properties on water and sediment transport: A case study at a small catchment in the Loess Plateau. Journal of Hydrology, 574, 211-225.
- Van Genuchten, M.T. (1980). A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil science society of America journal, 44(5), 892-898.
- Wang, Y.Z., A.M., Zhao, K., & Song, L. (2019). Fast solution for deformation characteristics of flexible bearing of the robot based on thin-walled ring theory. Transactions of the Chinese Society of Agricultural Engineering, 35(3), 60-66.
- Xu, Z.D. Xiang, Q.J, Waqar, A.Q. & Liu, J. (2018). Field combination experiment on impact sprinklers with aerating jet at low working pressure. Journal of Drainage Irrigation Machinery Engineering, 36(9), 840-844.
- Yan, H. J., Bai, G., He, J. Q., & Lin, G. (2011). Influence of droplet kinetic energy flux density from fixed spray-plate sprinklers on soil infiltration, runoff, and sediment yield. Biosystems Engineering, 110(2), 213-221.
- Yuan, S.Q., Ransford, O.D., Zhu, X.Y., Liu, J.P., & Tian, K. (2017). Optimization of movable irrigation system and performance assessment of distribution uniformity under varying conditions. International Journal of Agricultural and Biological Engineering, 10(1), 72-79. https://doi.org/10.3965/j.ijabe.20171001.2293844.
- Zheng, J., Fan, J., Zhang, F., Yan, S., & Xiang, Y. (2018). Rainfall partitioning into through, stemflow, and interception loss by maize canopy on the semi-arid Loess Plateau of China. Agricultural Water Management, 195, 25-36.
- Zhou, X.J. (2019). Application of agricultural machinery automation technology to realize the intelligent operation of agricultural machinery equipment. Agricultural Engineering Information, 39(36), 91-93.
- Zhu, X., Yuan, S., Jiang, J., Liu, J., & Liu, X. (2015). Comparison of fluidic and impact sprinklers based on hydraulic performance. Irrigation science, 33, 367-374.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-924b0519-26ce-44a5-9fdc-b83895d94ccb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.