PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Statistical methods of data analysis in obtaining thyme oil-loaded nanoemulsions as a potential skin antiseptic

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
24th Polish Conference of Chemical and Process Engineering, 13-16 June 2023, Szczecin, Poland. Guest editor: Prof. Rafał Rakoczy
Języki publikacji
EN
Abstrakty
EN
The two aims of this study were to obtain stable thyme-oil loaded nanoemulsions using the statistical design of experiment method (DOE) and to confirm their antimicrobial and disinfecting properties. Thyme oil was used as the oil phase, ECO Tween R©80 acted as an emulsifier, and the rest of the formulation was deionized water. Ultrasonication was chosen as the method of obtaining the nanoemulsions. It was checked whether the input parameters (oil concentration, emulsifier concentration, amplitude, and sonication time) had a significant impact on the output parameters (nanoemulsion particle size, polydispersity index, viscosity, and stability over time). For the formulations selected on the basis of the statistical data analysis, the values of minimum inhibitory concentrations (MIC) and minimum biocidal concentrations (MBC/MFC) were determined in relation to 10 bacterial strains and 10 strains of fungi (filamentous fungi, yeast-like fungi). The results obtained from the statistical analysis showed that the optimal concentration of the thyme oil in nanoemulsion should amount up to 2%. Biological studies proved that the obtained formulation had stronger antibacterial and antifungal activity compared to pure oil. Moreover, it was shown that the nanoemulsion caused a reduction of > 5 log of bacterial strains (S. aureus, P. aeruginosa) and > 4 log of fungal strains (C. albicans) after 30 minutes, a level required for disinfectants.
Rocznik
Strony
art. no. e36
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
  • Cracow University of Technology, Department of Chemical Engineering and Technology, Warszawska 24, 31-155 Krakow, Poland
  • Cracow University of Technology, Department of Chemical Engineering and Technology, Warszawska 24, 31-155 Krakow, Poland
  • Lukasiewicz – Research Network-Institute of Industrial Organic Chemistry, Annopol 6, 03-236 Warsaw, Poland
Bibliografia
  • 1. Adams R.P., 2007. Identification of essential oils components by gas chromatography. Quadruple mass spectroscopy. Allured Publishing Corporation, 4th edition. Carol Stream, Illinois, USA.
  • 2. Al-Assiuty B.A., Nenaah G.E., Ageba M. E., 2019. Chemical profile, characterization and acaricidal activity of essential oils of three plant species and their nanoemulsions against Tyrophagus putrescentiae, a stored-food mite. Exp. Appl. Acarol., 79, 359–376. DOI: 10.1007/s10493-019-00432-x.
  • 3. Aljabeili H.S., Barakat H., Abdel-Rahman H.A., 2018. Chemical composition, antibacterial and antioxidant activities of thyme essential oil (Thymus vulgaris). Food Nutr. Sci., 9, 433–446. DOI: 10.4236/fns.2018.95034.
  • 4. Bold B., Urnukhsaikhan E., Mishig-Ochir T., 2022. Biosynthesis of silver nanoparticles with antibacterial, antioxidant, antiinflammatory properties and their burn wound healing efficacy. Front. Chem., 10, 972534. DOI: 10.3389/fchem.2022.972534.
  • 5. Braga P.C., Dal Sasso M., Culici M., Bianchi T., Bordoni L., Marabini L., 2006. Anti-inflammatory activity of thymol: inhibitory effect on the release of human neutrophil elastase. Pharmacology, 77, 130–136. DOI: 10.1159/000093790.
  • 6. Bruna T., Maldonado-Bravo F., Jara P., Caro N., 2021. Silver nanoparticles and their antibacterial applications. Int. J. Mol. Sci., 22, 7202. DOI: 10.3390/ijms22137202.
  • 7. Burt S.A., Vlielander R., Haagsman H.P., Veldhuizen E.J.A., 2005. Increase in activity of essential oil components carvacrol and thymol against Escherichia coli O157:H7 by addition of food stabilizers. J. Food Prot., 68, 919–926. DOI: 10.4315/0362-028X-68.5.919.
  • 8. Campolo O., Giunti G., Laigle M., Michel T., Palmeri V., 2020. Essential oil-based nano-emulsions: Effect of different surfactants, sonication and plant species on physicochemical characteristics. Ind. Crops Prod., 157, 112935. DOI: 10.1016/j.indcrop.2020.112935.
  • 9. Castellini C., Ruggeri S., Mattioli S., Bernardini G., Macchioni L., Moretti E., Collodel G., 2014. Long-term effects of silver nanoparticles on reproductive activity of rabbit buck. Syst. Biol. Reprod. Med., 60, 143–150. DOI: 10.3109/19396368.2014. 891163.
  • 10. D’Arcy M.S., 2019. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int., 43, 582–592. DOI: 10.1002/cbin.11137.
  • 11. De Lira Mota K.S., De Oliveira Pereira F., De Oliveira W.A., Lima I.O., De Oliveira Lima E., 2012. Antifungal activity of Thymus vulgaris L. Essential oil and its constituent phyto- chemicals against Rhizopus oryzae: interaction with ergosterol. Molecules, 17, 14418–14433. DOI: 10.3390/molecules 171214418.
  • 12. Dhifi W., Bellili S., Jazi S., Bahloul N., Mnif W., 2016. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines, 3, 25. DOI: 10.3390/medicines3040025.
  • 13. El-Sayed S.M., El-Sayed H.S., 2021. Antimicrobial nanoemulsion formulation based on thyme (Thymus vulgaris) essential oil for UF labneh preservation. J. Mater. Res. Technol., 10, 1029–1041. DOI: 10.1016/j.jmrt.2020.12.073.
  • 14. Fani M., Kohanteb J., 2017. In vitro antimicrobial activity of Thymus vulgaris essential oil against major oral pathogens. J. Evidence-Based Complementary Altern. Med., 22, 660–666.DOI: 10.1177/2156587217700772.
  • 15. Hosseinzadeh S., Jafarikukhdan A., Hosseini A., Armand R., 2015. The application of medicinal plants in traditional and modern medicine: A review of Thymus vulgaris. Int. J. Clin. Med., 6, 635–642. DOI: 10.4236/ijcm.2015.69084.
  • 16. Jaworska M., Sikora E., Zielina M., Ogonowski J., 2013. Studies on the formation of O/W nano-emulsions, by low-energy emulsification method, suitable for cosmeceutical applications. Acta Biochim. Pol., 60, 779–782. DOI: 10.18388/abp.2013_2057.
  • 17. Jia M., Zhang W., He T., Shu M., Deng J., Wang J., Li W., Bai J., Lin Q., Luo F., Zhou W., Zeng X., 2020. Evaluation of the genotoxic and oxidative damage potential of silver nanoparticles in human NCM460 and HCT116 cells. Int. J. Mol. Sci., 21, 1618. DOI: 10.3390/ijms21051618.
  • 18. Kuete V., 2017. Chapter 28 – Thymus vulgaris. In: Kuete V. (Ed.), Medicinal spices and vegetables from Africa. Academic Press, Cambridge, MA, USA, 599–609. DOI: 10.1016/B978-0-12-809286-6.00028-5.
  • 19. Łętocha A., Miastkowska M., Sikora E., 2022. Preparation and characteristics of alginate microparticles for food, pharmaceutical and cosmetic applications. Polymers, 14, 3834. DOI: 10.3390/polym14183834.
  • 20. Liu Y., Guan W., Ren G., Yang Z., 2012. The possible mechanism of silver nanoparticle impact on hippocampal synaptic plasticity and spatial cognition in rats. Toxicol. Lett., 209, 227–231. DOI: 10.1016/j.toxlet.2012.01.001.
  • 21. Mahboubi M., Heidarytabar R., Mahdizadeh E., Hosseini H., 2017. Antimicrobial activity and chemical composition of Thymus species and Zataria multiflora essential oils. Agric. Nat. Resour., 51, 395–401. DOI: 10.1016/j.anres.2018.02.001.
  • 22. Marchese A., Orhan I.E., Daglia M., Barbieri R., Di Lorenzo A., Nabavi S.F., Gortzi O., Izadi M., Nabavi S.M., 2016. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem., 210, 402–414. DOI: 10.1016/j.foodchem.2016.04.111.
  • 23. Massada Y., 1976. Analysis of essential oils by gas chromatography and mass spectrometry. John Wiley & Sons, Inc., New York. USA.
  • 24. Miastkowska M., Michalczyk A., Figacz K., Sikora E., 2020. Nanoformulations as a modern form of biofungicide. J. Environ. Health Sci. Eng., 18, 119–128. DOI: 10.1007/s40201-020-00445-4.
  • 25. Michalczyk A., Ostrowska P., 2021. Essential oils and their components in combating fungal pathogens of animal and human skin. J. Med. Mycol., 31, 101118. DOI: 10.1016/j.mycmed.2021.101118.
  • 26. Moazeni M., Davari A., Shabanzadeh S., Akhtari J., Saeedi M., Mortyeza-Semnani K., Abastabar M., Nabili M., Moghadam F.H., Roohi B., Kelidari H., Nokhodchi A., 2021. In vitro antifungal activity of Thymus vulgaris essential oil nanoemulsion. J. Herb. Med., 28, 100452. DOI: 10.1016/j.hermed.2021.100452.
  • 27. Omran S.M., Esmailzadeh S., 2009. Comparison of anti-Candida activity of thyme, pennyroyal, and lemon essential oils versus antifungal drugs against Candida species. Jundishapur J. Microbiol., 2(2), 53–60.
  • 28. Osman Mohamed Ali E., Shakil N.A., Rana V.S., Sarkar D.J., Majumder S., Kaushik P., Singh B.B., Kumar J., 2017. Antifungal activity of nano emulsions of neem and citronella oils against phytopathogenic fungi, Rhizoctonia solani and Sclerotium rolfsii. Ind. Crops Prod., 108, 379–387. DOI: 10.1016/j.indcrop.2017.06.061.
  • 29. Pauli A., 2008. Relationship between lipophilicity and toxicity of essential oils. Int. J. Essent. Oil Ther., 2(2), 60–68.
  • 30. Pina-Vaz C., Gonçalves Rodrigues A., Pinto E., Costa de-Oliveira S., Tavares C., Salgueiro L., Cavaleiro C., Goncalves M.J., Martinez-de-Oliveira J., 2004. Antifungal activity of Thymus oils and their major compounds. J. Eur. Acad. Dermatol. Venereology, 18, 73–78. DOI: 10.1111/j.1468-3083.2004.00886.x.
  • 31. PN-EN 1040:2006. Chemiczne środki dezynfekcyjne i antyseptyczne – Ilościowa zawiesinowa metoda określania podstawowego działania bakteriobójczego chemicznych środków dezynfekcyjnych i antyseptycznych – Metoda badania i wymagania (faza 1).
  • 32. PN-EN 1275:2006. Chemiczne środki dezynfekcyjne i antyseptyczne – Ilościowa zawiesinowa metoda określania podstawowego działania grzybobójczego lub podstawowego działania bójczego wobec grzybów drożdżopodobnych chemicznych środków dezynfekcyjnych i antyseptycznych – Metoda badania i wymagania (faza 1).
  • 33. Rezvani E., Rafferty A., McGuinness C., Kennedy J., 2019. Adverse effects of nanosilver on human health and the environment. Acta Biomater., 94, 145–159. DOI: 10.1016/j.actbio.2019.05.04.2.
  • 34. Rota M.C., Herrera A., Martínez R.M., Sotomayor J.A., Jordán M.J., 2008. Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essen tial oils. Food Control, 19, 681–687. DOI: 10.1016/j.foodcont. 2007.07.007.
  • 35. Rys M., Miastkowska M., Sikora, E., Łętocha A., Krajewska A., Synowiec A., 2022. Bio-herbicidal potential of nanoemulsions with peppermint oil on barnyard grass and maize. Molecules, 27, 3480. DOI: 10.3390/molecules27113480.
  • 36. Salehi B., Mishra A.P., Shukla I., Sharifi-Rad M., del Mar Contreras M., Segura-Carretero A., Fathi H., Nasrabadi N.N., Kobarfard F., Sharifi-Rad J., 2018. Thymol, thyme, and other plant sources: Health and potential uses. Phytother. Res., 32, 1688-1706. DOI: 10.1002/ptr.6109.
  • 37. Šegvić Klarić M., Kosalec I., Mastelić J., Piecková E., Pepeljnak S., 2007. Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol against moulds from damp dwellings. Lett. Appl. Microbiol., 44, 36–42. DOI: 10.1111/j.1472-765X. 2006.02032.x.
  • 38. Sienkiewicz M., Łysakowska M., Ciecwierz J., Denys P., Kowalczyk E., 2011. Antibacterial activity of thyme and lavender essential oils. Med. Chem., 7, 674–689. DOI: 10.2174/157340611797928488.
  • 39. Sienkiewicz M., Wasiela M., 2012. Activity of thyme and lavender essential oils against antibiotic resistant clinical bacterial strains of Pseudomonas aeruginosa. Postępy Fitoterapii, 3, 139–145.
  • 40. Strużyńska L., Skalska J., 2018. Mechanisms underlying neurotoxicity of silver nanoparticles, In: Saquib Q., Faisal M., Al-Khedhairy A., Alatar A. (Eds.), Cellular and molecular toxicology of nanoparticles. Advances in experimental medicine and biology. Springer, Cham, 1048, 227–250. DOI: 10.1007/978-3-319-72041-8_14.
  • 41. Świdwińska-Gajewska A.M., Czerczak S., 2014. Nanosilver – Harmful effects of biological activity. Medycyna Pracy, 65, 831–845. DOI: 10.13075/mp.5893.00114.
  • 42. Tabandeh M.R., Samie K.A., Mobarakeh E.S., Khadem M.D., Jozaie S., 2022. Silver nanoparticles induce oxidative stress, apoptosis and impaired steroidogenesis in ovarian granulosa cells of cattle. Anim. Reprod. Sci., 236, 106908. DOI:10.1016/j.anireprosci.2021.106908.
  • 43. Velho M.C., de Oliveira D.A., da Silva Gündel S., Favarin F.R., Santos R.C.V., Ferreira Ourique A., 2019. Nanoemulsions containing mancozeb and eugenol: development, characterization, and antifungal activity against Glomerella cingulata. Appl. Nanosci., 9, 233–241. DOI: 10.1007/s13204-018-0903-9.
  • 44. Wang L., Li X., Zhang G., Dong J., Eastoe J., 2007. Oil-in-water nanoemulsions for pesticide formulations. J. Colloid Interface Sci., 314, 230–235. DOI: 10.1016/j.jcis.2007.04.079.
  • 45. Wawrzykiewicz K., Ziółkowska G., Sadzikowski Z., 2000. Oznaczanie wrażliwości dermatofitów na preparaty przeciwgrzybowe cylinderkową metodą rozcieńczeń w agarze. Medycyna Wet., 56(10), 648–652.
  • 46. Yildiz S., Turan S., Kiralan M., Ramadan M.F., 2021. Antioxidant properties of thymol, carvacrol, and thymoquinone and its efficiencies on the stabilization of refined and stripped corn oils. J. Food Meas. Charact., 15, 621–632. DOI: 10.1007/s11694- 020-00665-0
  • 47. Zambonelli A., D’Aulerio A.Z., Severi A., Benvenuti S., Maggi L., Bianchi A., 2004. Chemical composition and fungicidal activity of commercial essential oils of Thymus vulgaris L. J. Essent. Oil Res., 16, 69–74. DOI: 10.1080/10412905.2004.9698653.
  • 48. Zhang Y.-N., Poon W., Tavares A.J., McGilvray I.D., Chan W.C.W., 2016. Nanoparticle – liver interactions: Cellular uptake and hepatobiliary elimination. J. Controlled Release, 240, 332–348. DOI: 10.1016/j.jconrel.2016.01.020
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-924a70b7-6440-4d08-bc9d-334ef9077461
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.