PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bead-on-Plate Underwater Wet Welding on S700MC Steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The participation of high strength steels in marine and offshore structures is increasing, which makes it necessary to develop recommendations for underwater repair welding works. The article presents the results of bead-on-plate welded specimens made of S700MC high strength steel in underwater wet welding conditions by covered electrodes. Three specimens with heat input values in the range 0.91-1.05 kJ/mm were made. The specimens were subjected to visual, metallographic, macro- and microscopic tests as well as hardness measurements using the Vickers method. It was found that the higher heat input leads to formation of mixed bainite-martensite microstructure in the heat-affected zone (HAZ). Lower heat input value results in presence of martensite in HAZ. It was shown that in the scope of the performed tests, the maximum hardness of HAZ did not exceed the critical value for the material group, and the increase in heat input caused the decrease of hardness by about 25 HV10.
Twórcy
  • Institute of Machines and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza Street 11/12, 80-233 Gdańsk, Poland
  • Institute of Machines and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza Street 11/12, 80-233 Gdańsk, Poland
  • Institute of Machines and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza Street 11/12, 80-233 Gdańsk, Poland
  • Institute of Machines and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza Street 11/12, 80-233 Gdańsk, Poland
  • Institute of Machines and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza Street 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Rogalski G., Fydrych D., Łabanowski J. Underwater wet repair welding of API 5L X65M pipeline steel. Polish Maritime Research. 2017;24(S1):188–194.
  • 2. Wei P., Li H., Liu J., Li S., Zhang Y., Zhu Q., Lei Y. The effect of water environment on microstructural characteristics, compositional heterogeneity and microhardness distribution of 16Mn/304L dissimilar welded joints. Journal of Manufacturing Processes. 2020;56:417–427.
  • 3. Wang Z.D., Sun G.F., Chen M.Z., Lu Y., Zhang S.B., Lan H.F., Bi K.D., Ni Z.H. Investigation of the underwater laser directed energy deposition technique for the on-site repair of HSLA-100 steel with excellent performance. Additive Manufacturing. 2021;39:101884.
  • 4. Parshin S.G., Levchenko A.N., Wang P., Maystro A.S. Mathematical analysis of the influence of the flux-cored wire chemical composition on the electrical parameters and quality in the underwater wet cutting. Advances in Materials Science. 2021;21(1):77–89.
  • 5. Zaidi F.H.A., Ahmad R., Abdullah M.M.A.B., Abd Rahim S.Z., Yahya Z., Li L.Y., Ediati R. Geopolymer as underwater concreting material: A review. Construction and Building Materials. 2021;291:123276.
  • 6. George J.M., Kimiaei M., Elchalakani M., Fawzia S. Experimental and numerical investigation of underwater composite repair with fibre reinforced polymers in corroded tubular offshore structural members under concentric and eccentric axial loads. Engineering Structures. 2021;227:111402.
  • 7. Dong S., Han Y., Jia C., Wu C., Zhang M., Yang Q., Yang J. Organic adhesive assisted underwater submerged-arc welding. Journal of Materials Processing Technology. 2020;284:116739.
  • 8. Tomków J., Fydrych D., Rogalski G., Łabanowski J. Effect of the welding environment and storage time of electrodes on the diffusible hydrogen content in deposited metal. Revista de Metalurgia. 2019;55(1):e140.
  • 9. Sun K., Hu Y., Shi Y., Liao B. Microstructure evolution and mechanical properties of underwater dry welded metal of high strength steel Q690E under different water depths. Polish Maritime Research. 2020;27:112–119.
  • 10. Tomków J., Janeczek A., Rogalski G., Wolski A. Underwater local cavity welding of S460N Steel. Materials. 2020;13:5535.
  • 11. Fu Y., Guo N., Wang G., Yu M., Cheng Q., Zhang D. Underwater additive manufacturing of Ti-6Al4V alloy by laser metal deposition: Formability, gran growth and microstructure evolution. Materials & Design. 2021;197:109196.
  • 12. Tomków J., Janeczek A. Underwater in situ local heat treatment by additional stitches for improving the weldability of steel. Applied Sciences. 2020;10(5):1823.
  • 13. Fydrych D., Łabanowski J., Rogalski G., Haras J., Tomkow J., Świerczyńska A., Jakóbczak P., Kostro Ł. Weldability of S500MC steel in underwater conditions. Advances in Materials Science. 2014;14:37–45.
  • 14. Wang J., Sun Q., Ma J., Jin, P., Sun, T., Feng, J. Correlation between wire feed speed and external mechanical constraint for enhanced process stability in underwater wet flux-cored arc welding. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2018;233:2061–2073.
  • 15. Moreno-Uribe A.M., Bracarense A.Q., Pessoa E.C.P. The effect of polarity and hydrostatic pressure on operational characteristics of rutile electrode in underwater welding. Materials. 2020;13:5001.
  • 16. Wilhelm E., Mente T., Rhode M. Waiting time before NDT of welded offshore steel grades under consideration of delayed hydrogen-assisted cracking. Welding in the World. 2021;65(5):947–959.
  • 17. Schaupp T., Schroeder N., Schroepfer D., Kannengiesser T. Hydrogen-Assisted Cracking in GMA Welding of High-Strength Structural Steel—A New Look into This Issue at Narrow Groove. Metals. 2021;11(6):904.
  • 18. Chen H., Guo N., Xu K., Liu C., Wang G. Investigating the advantages of ultrasonic-assisted welding technique applied in underwater wet welding by in-situ X-ray imaging method. Materials. 2020;13:1442.
  • 19. Surojo E., Gumilang A.H., Triyono T., Prabowo A.R., Budiana E.P., Muhayat N. Effect of water flow on underwater wet welded A36 Steel. Metals. 2021;11:682.
  • 20. Wang J., Liu Y., Feng J., Sun Q. Microstructure evolution of E40 steel weldments in ultrasonicwave-assisted underwater FCAW. Welding Journal. 2021;100:106–120.
  • 21. Klett J., Wolf T., Maier H.J., Hassel T. The applicability of the standard DIN EN ISO 3690 for the analysis of diffusible hydrogen content in underwater wet welding. Materials. 2020;13:3750.
  • 22. Klett J., Hassel T. Influence of stick electrode coating’s moisture content on the diffusible hydrogen in underwater wet shielded metal arc welding. Advances in Materials Science. 2020;20:27-37.
  • 23. Parshin S.G., Levchenko A.M., Maystro A.S. Metallurgical model of diffusible hydrogen and nonmetallic slag inclusions in underwater wet welding of high-strength steel. Metals. 2020;10:1498.
  • 24. Tomków J. Weldability of underwater wet-welded HSLA steel: Effect of electrode hydrophobic coatings. Materials. 2021;14:1364.
  • 25. Wang J., Ma J., Liu Y., Zhang T., Wu S., Sun Q. Influence of Heat Input on Microstructure and Corrosion Resistance of Underwater Wet-Welded E40 Steel Joints. Journal of Materials Engineering and Performance. 2020;29(11):6987–6996.
  • 26. Braun M., Milaković A., Ehlers S., Kahl A., Willems T., Seidel M., Fischer C. Sub-zero temperature fatigue strength of butt-welded normal and highstrength steel joints for ships and offshore structures in arctic regions. Proceedings of the ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. 2020;3:V003T03A010.
  • 27. Ali L., Khan S., Bashmal S., Iqbal N., Dai W., Bai Y. Fatigue crack monitoring of T-type joints in steel offshore oil and gas jacket platform. Sensors. 2021;21:3294.
  • 28. Adumane S., Adedigba S., Khan F., Zendehboudi S. An integrated dynamic failure assessment model for offshore components under microbiologically influenced corrosion. Ocean Engineering. 2020;218:108082.
  • 29. Kumar S., Yadav V.K., Sharma S.K., Pandey C., Goyal A., Kumar P. Role of dissimilar Ni-based ERNiCrMo-3 filler on the microstructure, mechanical properties and weld induced residual stresses of the ferritic/martensitic P91 steel welds joint. International Journal of Pressure Vessels and Piping. 2021;193:104443.
  • 30. Tuz L. Determination of the causes of low service life of the air fan impeller made of highstrength steel. Engineering Failure Analysis. 2021;127:105502.
  • 31. Kaščák L., Cmorej D., Spišak E., Slota J. Joining the high-strength steel sheets used in car body production. Advances in Science and Technology Research Journal. 2021;15(1):184–196.
  • 32. Jimenez-Martinez M. Fatigue of offshore structures: A review of statistical fatigue damage assessment for stochastic loadings. International Journal of Fatigue. 2020;132:105327.
  • 33. Nykyforchyn H., Zvirko O., Dzioba I., Krechkovska H., Hredil M., Tsyrulnyk O., Student O., Lipiec S., Pala R. Assessment of Operational Degradation of Pipeline Steels. Materials. 2021;14:3247.
  • 34. Carpenter K.R., Dissanayaka P., Sterjovski Z., Li J., Donato J., Gazder A.A., van Duin S., Miller D., Johansson M. The effects of multiple repair welds on a quenched and tempered steel for naval vessels. Welding in the World. 2021.
  • 35. Łabanowski J., Fydrych D., Rogalski G., Samson K. Underwater welding of duplex stainless steel. Solid State Phenomena. 2012;183:101–106.
  • 36. Charziioannou K., Karamanos S.A., Huang Y. Ultra low-cycle fatigue performance of S420 and S700 steel welded tubular X-joints. International Journal of Fatigue. 2019;129:105221.
  • 37. Vuorinen A., Hosseini N., Hedayati A., Kornacker E., Fernandez M.T., Sanz J., Gonzalez M.I., Canibano E. Mechanical and microstructural evolution of high performance steel (S700MC) for road restraint systems. Engineering Failure Analysis. 2020;108:104251.
  • 38. Moravec J., Sobotka J., Novakova I., Bukovska S. Assessment the partial welding influences on fatigue life of S700MC steel fillet welds. Metals. 2021;11:334.
  • 39. Kik T., Górka J., Kotarska A., Poloczek T. Numerical verification of tests on the influence of the imposed thermal cycles on the structure and properties of the S700MC heat-affected zone. Metals. 2020;10:974.
  • 40. Górka J. Assessment of the weldability of T-welded joints in 10 mm thick TMCP steel using laser beam. Materials. 2018;11(7):1192.
  • 41. Górka J., Stano S. Microstructure and properties of hybrid laser arc welded joints (laser beam-mag) in thermo-mechanical control processed S700MC steel. Metals. 2018;8(2):132.
  • 42. Skowrońska B., Chmielewski T., Golański D., Szulc J. Weldability of S700MC steel welded with the hybrid plasma + MAG method. Manufacturing Review. 2020;7:4.
  • 43. Szymczak T., Makowska K., Kowalewski Z.L. Influence of the welding process on the mechanical characteristics and fracture of the S700MC high strength steel under various types of loading. Materials. 2020;13:5249.
  • 44. Węgrzyn T., Szymczak T., Szczucka-Lasota B., Łazarz B. MAG welding process with micro-jet cooling as the effective method for manufacturing joints for S700MC Steel. Metals. 2021;11:276.
  • 45. Świerczyńska A., Landowski M. Plasticity of BeadOn-Plate Welds Made with the Use of Stored FluxCored Wires for Offshore Applications. Materials. 2020;13:3888.
  • 46. Tomków J., Fydrych D., Wilk K. Effect of electrode waterproof coating on quality of underwater wet welded joints. Materials. 2020;13(13):2947.
  • 47. Njock Bayock F., Kah P., Mvola B., Layus P. Effect of Heat Input and Undermatched Filler Wire on the Microstructure and Mechanical Properties of Dissimilar S700MC/S960QC High-Strength Steels. Metals. 2019;9:883.
  • 48. Henzler W., Sawa M., Trębicki P., Szala M., Winiarski G. Influence of austenitic interlayer on the properties of stellite padding welds after impact-hardening. Welding Technology Review. 2021;93(2):13–20.
  • 49. Zima B., Kędra R. Detection and size estimation of crack in plate based on guided wave propagation. Mechanical Systems and Signal Processing. 2020;142:106788.
  • 50. Tomków J., Fydrych D., Rogalski G., Łabanowski J. Temper bead welding of S460N steel in wet welding conditions. Advances in Materials Science. 2018;18(3):5–14.
  • 51. Aloraier A.S., Joshi S., Price J.W., Alawadhi K.H.A.L.E.D. Hardness, microstructure, and residual stresses in low carbon steel welding with post-weld heat treatment and temper bead welding. Metallurgical and Materials Transactions A. 2014;45(4):2030–2037.
  • 52. Surojo E., Wicaksana N.I., Saputro Y.C.N., Budiana E.P., Muhayat N., Triyono T., Prabowo A.R. Effect of Welding Parameter on the Corrosion Rate of Underwater Wet Welded SS400 Low Carbon Steel. Applied Sciences. 2020;10:5843.
  • 53. Szala M., Szafran M., Macek W., Marchenko S., Hejwowski T. Abrasion resistance of S235, S355, C45, AISI 304 and Hardox 500 steels with usage of garnet, corundum and carborundum abrasive. Advances in Science and Technology Research Journal. 2021;13(4):151–161.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-924907d6-bf21-473b-9cff-ddcf46798ce9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.