PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of the Density of Energetic Materials on the Basis of their Molecular Structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The density of an energetic compound is an essential parameter for the assessment of its performance. A simple method based on quantitative structure-property relationship (QSPR) has been developed to give an accurate prediction of the crystal density of more than 170 polynitroarenes, polynitroheteroarenes, nitroaliphatics, nitrate esters and nitramines as important classes of energetic compounds, by suitable molecular descriptors. The evaluation techniques included cross-validation, validation through an external test set, and Y-randomization for multiple linear regression (MLR) and training state analysis for artificial neural network (ANN), and were used to illustrate the accuracy of the proposed models. The predicted MLR results are close to the experimental data for both the training and the test molecular sets, and for all of the molecular sets, but not as close as the ANN results. The ANN model was also used with 20 hidden neurons that gave good result. The results showed high quality for nonlinear modelling according to the squared regression coefficients for all of the training, validation and the test sets (R2 = 0.999, 0.914 and 0.931, respectively). The calculated results have also been compared with those from several of the best available predictive methods, and were found to give more reliable estimates.
Słowa kluczowe
Rocznik
Strony
73--101
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
autor
  • Department of Chemistry, University of Science and Technology, P.O. Box: 16846-13114, Tehran, Islamic Republic of Iran
  • Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr, P.O. Box 83145/115, Islamic Republic of Iran
  • Department of Chemistry, University of Science and Technology, P.O. Box: 16846-13114, Tehran, Islamic Republic of Iran
Bibliografia
  • [1] Keshavarz M.H., A Simple Theoretical Prediction of Detonation Velocities of Non-ideal Explosives only from Elemental Composition, in: New Research on Hazardous Materials, (Warey P.B., Ed.), Nova Science Publishers, 2007, Ch. 9, pp. 293-310; ISBN 1-60021-256-5.
  • [2] Fried L.E., Howard W.M., Souers P.C., CHEETAH 2.0 User’s Manual, Lawrence Livermore National Laboratory, Livermore, CA, 1998; UCRL-MA-117541-Rev. 5.
  • [3] Sikder A.K., Maddala G., Agrawal J.P., Singh H., Important Aspects of Behavior of Organic Energetic Compounds: A Review, J. Hazard. Mater. A, 2001, 84, 1-26.
  • [4] Agrawal J.P., High Energy Materials, WILEY-VCH, Weinheim, 2010; ISBN 978-3-527-32610-5.
  • [5] Keshavarz M.H., Explosive Materials, (Janssen T.J., Ed.), Nova Science Publishers, Hauppauge, New York, 2011, pp. 179; ISBN 978-1-61761-188-9.
  • [6] Keshavarz M.H., Research Progress on Heats of Formation and Detonation of Energetic Compounds, Hazardous Materials: Types, Risks and Control, (Brar S.K., Ed.), Nova Science Publishers, New York, 2011, pp. 339-359; ISBN 978-1-62417-518-3.
  • [7] Agrawal J.P., Hudgson R.D., Organic Chemistry of Explosives, John Wiley & Sons, West Sussen, 2007; ISBN 0-470-02967-6.
  • [8] Stine J.R., Prediction of Crystal Densities of Organic Explosives by Group Additivities, Los Alamos National Laboratory, 1981; LA-8920, UC-45.
  • [9] Ammon H.L., New Atom/Functional Group Volume Additivity Data Bases for the Calculation of the Crystal Densities of C-, H-, N-, O-, F-, S-, P-, Cl-, and Brcontaining Compounds, Struct. Chem., 2001, 21, 205-212.
  • [10] Sorescu D.C., Rice B.M., Thompson D.L., Theoretical Studies of Solid Nitromethane, J. Phys. Chem. B, 2000, 104, 8406.
  • [11] Sorescu D.C., Rice B.M., Thompson D.L., Decomposition, Crystal and Molecular Properties, in: Energetic Materials. Part 1., (Politzer P., Murray J.S., Eds.), Elsevier, Amsterdam, 2003, Ch. 6; ISBN 978-0-444-51518-6.
  • [12] Kim C.K., Cho S.G., Kim C.K., Park H.Y., Zhang H., Lee H.W., Prediction of Densities for Solid Energetic Molecules with Molecular Surface Electrostatic Potentials, J. Comput. Chem., 2008, 29, 1818.
  • [13] Rice B.M., Hare J.J., Byrd E.F.C., Accurate Predictions of Crystal Densities Using Quantum Chemical Molecular Volumes, J. Phys. Chem. A, 2007, 111, 10874-10879.
  • [14] Qiu L., Xiao H., Gong X., Ju X., Zhu W., Crystal Density Predictions for Nitramines Based on Quantum Chemistry, J. Hazard. Mater., 2007, 141, 280-288.
  • [15] Politzer P., Martinez J., Murray J.S., Concha M.C., Toro-Labbé A., An Electrostatic Interaction Correction for Improved Crystal Density Predictions, Mol. Phys., 2009,107, 2095-2101.
  • [16] Tarver C.M., Density Estimation for Explosives and Related Compounds Using the Group Additivity Approach, J. Chem. Eng. Data, 1979, 24, 136-145.
  • [17] Ammon H.L., Updated Atom/Functional Group and Atom Code Volume Additivity Parameters for the Calculation of Crystal Densities of Single Molecules, Organic Salts, and Multi-Fragment Materials Containing, H, C, B, N, O, F, S, P, Cl, Br and I, Propellants Explos. Pyrotech., 2008, 33, 92-102.
  • [18] Willer R.L., Calculation of the Density and Detonation Properties of C, H, N, O and F Compounds: Use in the Design and Synthesis of New Energetic Materials, J. Mex. Chem. Soc., 2009, 53, 108-119.
  • [19] Keshavarz M.H., Predictions of Densities of Acyclic and Cyclic Nitramines, Nitrate Esters and Nitroaliphatic Compounds for Evaluation of their Detonation Performance, J. Hazard. Mater., 2007, 143, 437-442.
  • [20] Keshavarz M.H., New Method for Calculating Densities of Nitroaromatic Explosive Compounds, J. Hazard. Mater., 2007, 145, 263-269.
  • [21] Keshavarz M.H., Pouretedal H.R., A Reliable Simple Method to Estimate Density of Nitroaliphatics, Nitrate Esters and Nitramines, J. Hazard. Mater., 2009, 169, 158-169.
  • [22] Keshavarz M.H., Novel Method for Predicting Densities of Polynitro Arene and Polynitro Heteroarene Explosives in Order to Evaluate Their Detonation Performance, J. Hazard. Mater., 2009, 165, 579-588.
  • [23] Cho S.G., Goh E.M., Kim J.K., Holographic QSAR Models for Estimating Densities of Energetic Materials, Bull. Kor. Chem. Soc., 2001, 22, 775-778.
  • [24] Karfunkel H.R., Gdanitz R.J., Ab initio Prediction of Possible Crystal Structures for General Organic Molecules, J. Comput. Chem., 1992, 13, 1171-1183.
  • [25] Bartošková M., Friedl Z., The Relationship between the Heats of Formation and the Molecular Electrostatic Potentials of Polyazaarenes, Cent. Eur. J. Energ. Mater., 2013, 10, 103-112.
  • [26] Morrill J.A., Byrd E.F., Development of Quantitative Structure-Property Relationships for Predictive Modeling and Design of Energetic Materials, J. Mol. Graph. Model., 2008, 27, 349-355.
  • [27] Fayet G., Rotureau P., Development of Simple QSPR Models for the Impact Sensitivity of Nitramines, J. Loss Prevet. Proc., 2014, 30, 1-8.
  • [28] Keshavarz M.H., Motamedoshariati H., Moghayadnia R., Ghanbarzadeh M., Azarniamehraban J., Prediction of Sensitivity of Energetic Compounds with a New Computer Code, Propellants Explos. Pyrotech., 2014, 39, 95-101.
  • [29] Bagheri M., Gandomi A.H., Bagheri M., Shahbaznezhad M., Multi-expression Programming Based Model for Prediction of Formation Enthalpies of Nitro-Energetic Materials, Expert Systems, 2013, 30, 66-78.
  • [30] Yan Q.L., Zeman S., Theoretical Evaluation of Sensitivity and Thermal Stability for High Explosives Based on Quantum Chemistry Methods: a Brief Review, Int. J. Quant. Chem., 2013, 113, 1049-1061.
  • [31] Cocchi M., De Benedetti P.G., Seeber R., Tassi L., Ulrici A., Development of Quantitative Structure-property Relationships Using Calculated Descriptors for the Prediction of the Physicochemical Properties (nD, ρ, bp, ε, η) of a Series of Organic Solvents, J. Chem. Inf. Comput. Sci., 1999, 39, 1190-1203.
  • [32] Katritzky A.R., Lobanov V.S., Karelson M., QSPR: The Correlation and Quantitative Prediction of Chemical and Physical Properties from Structure, Chem. Soc. Rev., 995, 24, 279-287.
  • [33] Katritzky A.R., Petrukhin R., Jain R., Karelson M., QSPR Analysis of Flash Points, J. Chem. Inf. Comput. Sci., 2001, 41, 1521-1530.
  • [34] Katritzky A.R., Stoyanova-Slavova I.B., Dobchev D.A., Karelson M., QSPR Modeling of Flash Points: an Update, J. Mol. Graph. Model., 2007, 26, 529-536.
  • [35] Keshavarz M.H., Simple Method for Prediction of Activation Energies of the Thermal Decomposition of Nitramines, J. Hazard. Mater., 2009, 162, 1557-1562.
  • [36] Keshavarz M.H., Pouretedal H.R., Shokrolahi A., Zali A., Semnani A., Predicting Activation Energy of Thermolysis of Polynitroarenes through Molecular Structure, J. Hazard. Mater., 2008, 160, 142-147.
  • [37] Rice B.M., Hare J.J., A Quantum Mechanical Investigation of the Relation between Impact Sensitivity and the Charge Distribution in Energetic Molecules, J. Phys. Chem. A, 2002, 106, 1770-1783.
  • [38] Saraf S.R., Rogers W.J., Mannan M.S., Prediction of Reactive Hazards Based on Molecular Structure, J. Hazard. Mater., 2003, 98, 15-29.
  • [39] Theerlynck E., Mathieu D., Simonetti P., Towards Improved Models to Rationalize and Estimate the Decomposition Temperatures of Nitroalkanes, Nitramines and Nitric Esters, Thermochim. Acta, 2005, 426, 123-129.
  • [40] Afanas’ev G.T., Pivina T.S., Sukhachev D.V., Comparative Characteristics of Some Experimental and Computational Methods for Estimating Impact Sensitivity Parameters of Explosives, Propellants Explos. Pyrotech., 1993, 18, 309-316.
  • [41] Toghiani R.K., Toghiani H., Maloney S.W., Boddu V.M., Prediction of Physicochemical Properties of Energetic Materials, Fluid Phase Eq., 2008, 264, 86-92.
  • [42] Politzer P., Ma Y., Lane P., Concha M.C., Computational Prediction of Standard Gas, Liquid, and Solid-phase Heats of Formation and Heats of Vaporization and Sublimation, Int. J. Quantum. Chem., 2005, 106, 341-347.
  • [43] Pospisil M., Vavra P., Concha M.C., Murray J.S., Politzer P., A Possible Crystal Volume Factor in the Impact Sensitivities of Some Energetic Compounds, J. Mol. Model., 2010, 16, 895-901.
  • [44] Meyer R., Köhler J., Homburg A., Explosives, 6th ed., Wiley-VCH, Weinheim, 2007; ISBN 978-3-527-31656-4.
  • [45] Pagoria P.F., Lee J.S., Mitchell A.R., Schmidt R.D., A Review of Energetic Materials Synthesis, Thermochim. Acta, 2002, 384, 187-204.
  • [46] Agrawal J.P., Recent Trends in High-energy Materials, Prog. Energy Combust. Sci., 1998, 24, 1-30.
  • [47] Sikder A.K., Sikder N., A Review of Advanced High Performance, Insensitive and Thermally Stable Energetic Materials Emerging for Military and Space Applications, J. Hazard. Mater. A, 2004, 112, 1-15.
  • [48] Todeschini R., Consonni V., Pavana M., Milano Chemometrics and QSAR Research Group [Online] available: http://michem.disat.unimib.it/chm/
  • [49] Leardi R., Boggia R., Terrile M., Genetic Algorithms as a Strategy for Feature Selection, J. Chemom., 1992, 6, 267-281.
  • [50] Agrawal V.K., Khadikar P.V., QSAR Prediction of Toxicity of Nitrobenzenes, Bioorg. Med. Chem., 2001, 9, 3035-3040.
  • [51] Baumann K., Chance Correlation in Variable Subset Regression: Influence of the Objective Function, the Selection Mechanism, and Ensemble Averaging, QSAR Comb. Sci., 2005, 24, 1033-1046.
  • [52] Tropsha A., Gramatica P., Gombar V.K., The Importance of Being Earnest: Validation is the Absolute Essential for Successful Application and Interpretation of QSPR Models, QSAR Comb. Sci., 2003, 22, 69-77.
  • [53] González A.G., Use and Misuse of Supervised Pattern Recognition Methods for Interpreting Compositional Data, J. Chromatogr. A, 2007, 1158, 215-225.
  • [54] Berrueta L.A., Alonso-Salces R.M., Héberger K., Supervised Pattern Recognition in Food Analysis, J. Chromatogr. A, 2007, 1158, 196-214.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92480a63-4ddb-4692-a549-852b8f926d5c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.