Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
O problemie znalezienia konturu stałej wytrzymałości wewnątrz lepkosprężystego prostokąta
Języki publikacji
Abstrakty
The problem of finding an equal-strength contour inside a viscoelastic rectangle according to the Kelvin-Voigt model is considered. It is assumed that constant normal compressive forces with given principal vectors act on the sides of the rectangle (or the values of constant normal displacements are known), and the inner boundary (the desired equal-strength contour) is free from external forces. The methods of the theory of conformal reflections, Cauchy type integral and boundary value problems of analytic functions are used to study the plate bending problems discussed in the paper. Which in turn are based on the task of constructing a conformally mapping function on a doubly linked circular ring bounded by broken line. The latter is reduced to the Riemann-Hilbert problem for a circular ring based on the solution of which it becomes possible to present the mentioned function in a defective form. It is worth noting that when considering mixed problems of plate bending for doubly connected areas bounded by broken line, it is possible to decompose them into two independent problems, each of which is a Riemann-Hilbert problem.
Rozważono problem znalezienia konturu o stałej wytrzymałości wewnątrz lepko sprężystego prostokąta zgodnie z modelem Kelvina-Voigta. Zakłada się, że na boki prostokąta działają stałe normalne siły ściskające o danych wektorach głównych (lub znane są wartości stałych przemieszczeń normalnych), a wewnętrzna granica (żądany kontur o jednakowej wytrzymałości) jest wolna od sił zewnętrznych. Do badania omawianych w artykule problemów zginania płyt wykorzystano metody teorii odbić konforemnych, zagadnienia całki typu Cauchy’ego i wartości brzegowych funkcji analitycznych, które z kolei opierają się na zadaniu skonstruowania funkcji odwzorowującej konformalnie na podwójnie połączonym pierścieniu kołowym ograniczonym linią przerywaną. To ostatnie sprowadza się do problemu Riemanna-Hilberta dla pierścienia kołowego na podstawie rozwiązania, które możliwe jest jako przedstawienie wspomnianej funkcji w postaci wadliwej. Warto zauważyć, że rozpatrując mieszane problemy zginania blachy dla obszarów podwójnie połączonych ograniczonych linią przerywaną, można je rozłożyć na dwa niezależne problemy, z których każdy jest problemem Riemanna-Hilberta.
Rocznik
Tom
Strony
41--47
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
- Ivane Javakhishvili Tbilisi State University, Ilia Chavchavadze Avenue, Tbilisi 0179, Georgia
autor
- The Department of Engineering Mechanics and Construction, Georgian Technical University, Kostava Str., Tbilisi 0171, Georgia
autor
- Czestochowa University of Technology, Faculty of Civil Engineering, ul. Akademicka 3, 42-218 Częstochowa, Poland
Bibliografia
- 1. Bantsuri R.D., One mixed problem of the plane theory with a partially unknown boundary, Proc. A. Razmadze Math. Inst. 2006, 140, 9-16.
- 2. Bantsuri R.D., Solution of the mixed problem of plate bending for a multi-connected domain with partially unknown boundary in the presence of cyclic symmetry, Proc. A. Razmadze Math. Inst. 2007, 145, 9-22.
- 3. Muskhelishvili N., Some basic problems of the mathematical theory of elasticity (Russian), Nauka, Moscow 1966.
- 4. Odishelidze N., Criado-Aldenueva F., Some axially symmetric problems of the theory of plane elasticity with partially unknown boundaries, Acta Mechan. 2008, 199, 227-240.
- 5. Mjavanadze V., Inverse problems of elasticity theory in the presence of cyclic (Russian), Soobsh, Akad. Science Grusin SSR 1984, 113, N1, 53-56.
- 6. Kapanadze G., The problem of plate bending for a finite doubly- connected domain with a partially unknown boundary (Russian), Prikl. Melh. 2003, 39, 5, 121-126.
- 7. Kapanadze G., On one problem of the plane theory of elasticity with a partially unknown boundary, Proc. Of A. Razmadze Math. Inst. 2007, 143, 61-71.
- 8. Kapanadze G., On a bending a plate for a doubly connected domain with partially unknown boundary, Prikl. Math. Mekh. 2007, 71, 1, 33-42; Translation in Appl. Math. Mekh. 2007, 71, 1, 30-39.
- 9. Bantsuri R.D., Kapanadze G., The problem of finding a full-strength inside the polygon, Proc. of A. Razmadze Math. Inst. 2013, 163, 1-7.
- 10. Shavlakadze N., Kapanadze G., Gogolauri D., About one contact problem for a viscoelastic halfplate, Translat. Of A. Razmadze. Math. Inst. 2019, 173, 103-110.
- 11. Kipiani G., Review of works on the calculation of thin-walled spatial systems with discontinuous parameters (1980-2013), Materials of V International Conference Actual problems of architect and construction, 25-28 June 2013, SPBGASU 2, p. 1. -SPB, 2013, pp. 262-267.
- 12. Mikhailov B., Plates and shells with discontinuous parameters, LGU, Leningrad 1980 (In Russian).
- 13. Savin G., Stresses Distribution Near Holes, Ed. "Naukova Dumka", Kyiv 1968.
- 14. Gurgenidze D., Badzgaradze G., Kipiani G., Analysis on stability of having holes thin-walled spatial structures, International Scientific Journal Problems of Mechanics 2020, 1(78), 25-33.
- 15. Mikhailov B., Kipiani G., Deformability and stability of spatial lamellar systems with discontinuous parameters, Stroyizdat SPB, Sankt Petersburg 1996 (In English).
- 16. Kipiani G., Definition of critical loading on three-layered plate with cuts by transition from static problem to stability problem, Contemporary Problems in Architecture and Construction, Selected, peer reviewed papers the 6th International Conference on Contemporary Problems of Architecture and Construction, June 24-27, 2014, Ostrava, Transtech. Publications, Switzerland 2014, 143-150.
- 17. Kapanadze G., Kakhaia K., Kipiani G., On one inverse task of variable stiffness plate bending, Georgian Engineering News 2006, 3, 35-38.
- 18. Churchelauri Z., Kipiani G., Calculation of thin-walled prefabricated type shells with model of plastic-rigid body, Selected, blind peer reviewed papers from 7th International Conference on Contemporary Problems of Architecture and Construction. November 19th-21st, 2015, Florence 2015, 19-24.
- 19. Mikhailov B., Kipiani G., Moskaleva V., Fundamentals of theory and methods of analysis on stability of sandwich plates with cuts, Metsniereba, Tbilisi 1991 (In Russian).
- 20. Kipiani G., Rajczyk M., Lausova L., Influence of rectangular holes on stability of three-layer plates, Applied Mechanics and Materials 2015, 711, 397-401, DOI: 10.4028/www.scientific.net/AMM.771.397.
- 21. Kipiani G., Deformability and stability of rectangular sandwich panels with cuts under in-plane loading, Architecture and Engineering 2016, 1, 1 March, 26-30 (aej.spbgasu.ru/index.php/AE/issue/view/3).
- 22. Kipiani G., Basic principles of analysis of thin-walled spatial systems with discontinuous parameters, Proceedings of 11th International Conference on Contemporary Problems of Architect and Construction. Yerevan, Armenia, October 14-16, 2019.
- 23. Gurgenidze D., Kipiani G., Badzgaradze G., Suramelashvili R., Analysis of thin-walled spatial systems of complex structure with discontinuous parameters by method of large blocks, Contemporary Problems of Architecture and Construction, Taylor & Francis, London 2021, 172-178, DOI: l0.1201/9781003176428.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92469c83-1584-4c14-9a41-60269dcb1bd4