PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wykorzystanie chromatografii membranowej do odzyskiwania białek aktywnych biologicznie z odpadów przemysłu skrobiowego

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Use of Membrane Chromatography for Recovery of Biologically Active Protein from Starch Industry Waste
Języki publikacji
PL
Abstrakty
EN
Starch industry generates enormous amount of wastes which contains several valuable components such as minerals, proteins and amino acids. In the past those wastes were released to the environment in unchanged form or used as fertilizers or animal feed. However, economical and ecological functionality of those applications was minor and rather a result of lack of better options than real needs. Currently, due to the urgent necessity of environment pollution prevention as well as for economic reasons, research concerning development of new methods of recovery, bioconversion and utilization of valuable substances present in wastes is being undertaken. This publication aims to describe strategies of starch industry wastes conversion, mainly potato soap, into useful products. Historical, presently used and advanced biotechnological methods were described. In addition, an economical and ecological evaluation of methods was performed. Ion-Exchange chromatography can be an economically profitable technology for the isolation and purification of different native potato proteins. Using membrane adsorption instead of classical chromatography has many advantages. Further availability of filter modules with different shapes and capacities enables the efficient isolation of proteins on an industrial scale. The application of ion-exchange modules for active recovery of proteins from potato juice is confirmed by research. In recent years, Sartorius Stedim Biotech company has designed new modules with polymer spacers and different channel sizes (MA-IEX-modules) enabling processing of crude, particle-containing solutions using a tangential flowthrough the membranes. The great advantage of this solution is the possibility of omitting the first steps of the purification, what saves time and money. The usefulness of such units was confirmed by isolation of valuable potato proteins: patatin and low molecular weight from potato fruit juice from starch factory. In this study a preliminary researches of the possibility of using the membrane ion exchange chromatography as a technique for recovery of biologically active protein from waste material which is potato pulp is also presented.
Rocznik
Strony
1699--1714
Opis fizyczny
Bibliogr. 46 poz., rys.
Twórcy
  • Uniwersytet, Brema, Niemcy, Centrum Badan nad Środowiskiem i Zrównoważonych Technologii
  • IHAR – PIB, Zakład Nasiennictwa i Ochrony Ziemniaka, Bonin
  • IHAR – PIB, Zakład Nasiennictwa i Ochrony Ziemniaka, Bonin
autor
  • IHAR – PIB, Zakład Nasiennictwa i Ochrony Ziemniaka, Bonin
Bibliografia
  • 1. Abouzied M.M., Reddy C.A.: Direct fermentation of potato starch to ethanol by cocultures of Aspergillus niger and Saccharomyces cerevisiae. Applied and Environmental Microbiology 52(5), 1055–1059 (1986).
  • 2. Allen A.K., Bolwell G.P., Brown D.S., Sidebottom C., Slabas A.R.: Pota- to lectin:a three-domain glycoprotein with novel hydroxyproline-containing sequencesand sequence similarities to wheat-germ agglutinin. International Journal of Biochemistry & Cell Biology 28, 1285–1291 (1996).
  • 3. Bárta J., Heřmanová V., Diviš J.: Effect of low-molecular additives on precipitation of potato fruit juice proteins under different temperature re- gimes. Journal of Food Process Engineering 31, 533–547 (2007).
  • 4. Bártová V., Bárta J.: Chemical composition and nutritional value of protein concentrates isolated from potato (Solanum Tuberosum L.) fruit juice by precipitation with ethanol or ferric chloride. Journal of Agricultural and Food Chemistry, 57, 9026–9034 (2009).
  • 5. Barnett C., Smith A., Scanlon B., Israilides C. J.: Pullulan production by Aureobasidium pullulans growing on hydrolysed potato starch waste. Carbohydrate Polymers 38, 203–209 (1999).
  • 6. Bennett A.: Membranes in industry: facilitating reuse of wastewater. Filtration & Separation. 42(8), 28–30 (2005).
  • 7. Bergthaller W.: Chemical and functional properties of food saccharides.Krakow, CRC Press. (2003).
  • 8. Cheng Y., Xiong Y., Chen J.: Antioxidant and emulsifying properties of potato protein hydrolysate in soybean oil-in-water emulsions. Food Chemistry, 120, 101–108 (2010).
  • 9. Drumright R. E., Gruber P. R., Henton D. E.: Polylactic Acid Technology. Advanced Materials 12(23), 1841–1846 (2000).
  • 10. Ginkel S. W. V., Oh S.-E., Logan B. E.: Biohydrogen gas production from food processing and domestic wastewaters. International Journal of Hydrogen Energy 30(15), 1535–1542 (2005).
  • 11. Grobben N. G., Eggink G., Cuperus F. P., Huizing H. J.: Production of acetone, butanol and ethanol (ABE) from potato wastes: fermentation with integrated membrane extraction. Applied Microbiology and Biotechnology 39(4–5), 494–498, (1993).
  • 12. Graf A.M.: Entwicklung und Anwendung prozesstechnischer und analytischerSystemezur Wertschöpfung bioaktiver Inhaltsstoffe aus Kartoffeln. Disser-tation Universität Hannover 2010.
  • 13. Graf A.M., Steinhof R., Lotz M., Tippkotter N., Kasper C., Beutel S., Ulber R.: Downstream-Processing mit Membranadsorbern zur Isolierung nativer Prote-infraktionen aus Kartoffelfruchtwasser. Chemie Ingenieur Technik 81, 267–274 (2009).
  • 14. Huang L. P., Jina B., Lant P., Zhou J.: Simultaneous saccharification and fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus. Biochemical Engineering Journal 23, 265– 276 (2005).
  • 15. Jin B., Leeuwen H. J. v., Patel B., Yu Q.: Utilisation of starch processing wastewater for production of microbial biomass protein and fungal alphaamylase by aspergillus oryzae." Bioresource Technology 66(3), 201–206 (1998).
  • 16. Jin B., Leeuwen H. J. v., Patel B., Doelle H. W., Yu Q.: Production of fungal protein and glucoamylase by Rhizopus oligosporus from starch processing wastewater. Process Biochemistry. 34, 59–65 (1999).
  • 17. Jin B., Yan X. Q., Yu Q., Leeuwen J. H.: A comprehensive pilot plant system for fungal biomass protein production and wastewater reclamation. Advances in Environmental Research. 6, 179–189 (2002).
  • 18. Kamnerdpetch C., Weiss M., Kasper C., Scheper T.: An improvement of potato pulp protein hydrolyzation process by the combination of protease enzyme systems. Enzyme and Microbial Technology 40, 508–514 (2007).
  • 19. Koningsveld G.A.v., Gruppen H., Jongh H.H.J.d., Wijngaards G., Boekel M.A.J.S.v., Walstra P., Voragen A.G.J.: The solubility of potato proteins from industrial potato fruit juice as influenced by pH and various additives. Journal of Science of Food and Agriculture 82, 134–142 (2001).
  • 20. Lasik M., Nowak J., Kent C.A., Czarnecki Z.: Assessment of Metabolic Activity of Single and Mixed Microorganism Population Assigned for Potato Wastewater Biodegradation. Polish Journal of Environmental Studies 11(6), 719–725 (2002).
  • 21. Laufenberg G., Grüß O., Kunz B.: New concepts for the utilisation of residual products from food industry – Prospects for the potato starch industry.Starch-Stärke 48, 315–321 (1996).
  • 22. Laufenberg G., Kunz B., Nystroem M.: Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations. Bioresource Technology 87, 167–198 (2003).
  • 23. Lay J.-J.: Modeling and Optimization of Anaerobic Digested Sludge Converting Starch to Hydrogen. Biotechnology and Bioengineering 68(3), 269–278 (2000).
  • 24. Lewosz J.: Opis patentowy, 195200, PL.. Zgłosz. P. 357963 Opubl. 28.06.2004. Sposób otrzymywania peroksydazy z wycierki ziemniaczanej. Instytut Hodowli i Aklimatyzacji Roślin, Radzików 2002.
  • 25. Menze, F., Kasper C., Scheper T., Zeidler R.: Abtrennung wertvoller Kartof-felproteine mit Hilfe von Membranadsorbern. Bio spektrum 1, (2005).
  • 26. Markiewicz M.: Analiza instalacji do uzyskiwania frakcji białek z odpadowych wód sokowych pokrochmalniczych. Praca Magisterska. Politechnika Koszalińska 2007.
  • 27. Miedzianka J., Pęksa A., Aniolowska M.: Properties of acetylated potato protein preparations. Food Chemistry, 133, 1283–1291 (2012).
  • 28. Mioduszewska H., Bielińska-Czarnecka M., Klocek J.: Zmiany aktywności peroksydaz w roślinach ziemniaka hodowanych w kulturach in vitro. [W:] Botanika polska u progu XXI wieku. Mater. symp. i obrad sekcji 51 Zjazdu PTB Gdańsk, 15–19.09.1998. PTB Gdańsk: 334, (1998).
  • 29. Pałasiński M.: Przemysł skrobiowy. Kraków, Wydawnictwo Naukowe Akapit. (1999).
  • 30. Pastuszewska B., Taciak M., Tuśnio A.: Koncentrat białka ziemniaczanego w żywieniu zwierząt monogastrycznych. Postępy Nauk Rolniczych 5, 91–106 (2007).
  • 31. Pęksa A., Gołubowska G., Rytel E., Lisińska G., Aniołowski K.: Influence of harvest date on the glycoalkaloid contents of three potato varieties. Food Chem. 78, 313–317 (2002).
  • 32. Pots A.M.: Physico-chemical properties and thermal aggregation of patatin,the major potato tuber protein. Dissertation Universität Wageningen 1999.
  • 33. Sartorius Stedim Biotech: Sartobind Membrane Adsorbers for Rapid Purification of Proteins. (2009).
  • 34. Schoenbeck I., Graf A.M., Leuthold M., Pastor A., Beutel S., Scheper T.: Purification of high value proteins from particle containing potato fruit juice via direct capture membrane adsorption chromatography. J Biotechnol. 168, 693–700 (2013).
  • 35. Steinhof R.: Aufbau eines Downstream-Prozesses zur Proteingewinnungmittels Membrantechnologie am Beispiel von Kartoffelfruchtwasser. Dissertation Universität Hannover 2007.
  • 36. Suck K., Walter J., Menzel F., Tappe A., Kasper C., Naumann C., Zeidler R., Scheper T.: Fast and efficient protein purification using membrane adsorber sys-tems. Journal of Biotechnology 121, 361–367 (2006).
  • 37. Tsai S. P., Moon S. H.: An Integrated Bioconversion Process for Production of L-Lactic Acid from Starchy Potato Feedstocks. Applied Biochemistry and Biotechnology 70–72, 417–428 (1998).
  • 38. Tuśnio A. Pastuszewska B. Swiech E. Taciak M.: Response of young pigs to feeding potato protein and potato fibre — nutritional, physiological and biochemical parameters. J. Anim. Feed Sci. 20 (3), 361–378 (2011).
  • 39. Ulber R.: Biotechnologische Methoden zur effizienteren Rohstoffnutzung. Habilitationsschrift Universität Hannover. (2002).
  • 40. van Konigsveld G.A.: Physico-chemical and functional properties of potatoproteins. In: Dissertation Universität Wageningen 2001.
  • 41. Waglay A., Salwa K., Alli I.: Potato protein isolates: Recovery and characterization of their properties. Food chemistry. 142, 373– 382 (2014).
  • 42. Vikelouda M., Kiosseoglou V.: The use of carboxymethylcellulose to recover potato proteins and control their functional properties. Food Hydrocolloids 18, 21–27 (2004).
  • 43. Zgórska K., Czerko Z., Grudzińska M.: Wpływ wybranych czynników na zawartość glikoalkaloidów w bulwach ziemniaka. Żyw. Nauk. Technol. Ja. 1 (46) Supl.: 229– 234 (2006).
  • 44. Zhang H., Zhou X., Dong J., Zhang G., Wang C.: A novel family of green ionic liquids with surface activities. Science in China Series B: Chemistry 50, 238–242 (2007).
  • 45. Zhang T., Liu H., Fang H. H. P.: Biohydrogen production from starch in wastewater under thermophilic condition. Journal of Environmental Management 69, 149–156 (2003).
  • 46. Zwijnenberg H.J., Kemperman A.J.B., Boerrigter M.E., Lotz M., Dijksterhuis J.F., Paulsen P.E., Koops G.-H.: Native protein recovery from potato fruit juice by ultrafiltration. Desalination 144, 331–334 (2002).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-92427b77-381c-46ed-bef6-3597532be28b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.