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In this study, a new composite laminated shell model is proposed for free vibration and
stability analysis based on the refined zigzag theory (RZT). In contrast to the published
shell models based on the first-order shear deformation theory (FSDT), piecewise-linear
zigzag functions are utilized to provide a more realistic representation of deformation states
of a transverse shear-flexible shell. In the present formulation, the governing equations and
boundary conditions of composite laminated shells are established by d’Alembert’s principle
to obtain natural frequencies and critical buckling loadings. In order to evaluate the effec-
tiveness and performance of the present new model for composite laminated shells, examples
of free vibration and buckling analysis are carried out for cylindrical and spherical shells in-
volving different lamination schemes and design parameters. The results are compared with
the three dimensional (3D) exact, first-order and some high-order solutions in the literature.
Numerical results show that the present model not only has high accuracy but also has
superior computational efficiency in comparison with high-order models, such that it may
show a great potential in engineering applications.
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1. Introduction

Fiber reinforced composites have high specific strength and stiffness, excellent fatigue resistance,
corrosion resistance and design flexibility. In addition, shell structures have higher structural stiff-
ness due to their curvature effect in comparison with plate structures. Therefore, shell structures
made of composite materials have a wide application in engineering, such as cylindrical tanks
and rocket compartments, etc. Thus, mechanical properties of these structures are extremely
important to engineering, which have attracted much attention of so many scholars.

The classical plate assumes that normal to the mid-plane remains normal after deforma-
tion and does not change in length (Reddy, 2003). Although these classical assumptions are
very simple, the transverse shear strains are neglected. Thus, it is only valid in thin structures.
With the urgent demand for light-weight and high-strength materials in the aerospace field,
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multilayered composite laminated shell structures have gradually developed into the main load-
-bearing structure. Owning to the above mentioned limitations, the classical shell theory (CST)
is not adaptable to analysis of multilayered composite laminates with a relatively soft trans-
verse shear modulus (Matsunaga, 2004). Therefore, transverse shear strains cannot be ignored
anymore to capture the truly structural behavior. This trend urges people to try to find new
modeling strategies to solve the accuracy problem of composite laminated shells. The FSDT or
Reissner-Mindlin theory (Reissner, 1945; Mindlin, 1951) improves the classical laminated theory
by relaxing Kirchhoff’s third assumption that the transverse normal is no longer perpendicular
to the middle plane after deformation. However, some researchers pointed out that it is incorrect
to refer to the Reissner plate theory as a FSDT, because it would inevitably lead to displace-
ment variation being not necessarily linear across the plate thickness (Wang et al., 2001). In the
following, we focus on the Mindlin FSDT in this study. It is noted that the transverse shear
strain is assumed constant along the thickness direction in the Mindlin model, such that the
natural surface conditions are violated. After introducing some appropriate shear correction co-
efficients, this theory can predict the displacement and other overall characteristics of composite
laminated shells with a medium thickness. By further increasing the thickness, the calculation
accuracy of this theory is obviously reduced (Iurlaro et al., 2015). In order to further improve
the accuracy in thick shells, scholars improved the FSDT and put forward the equivalent single-
-layer higher-order shear deformation theory (HSDT) (Reddy and Liu, 1985, Matsunaga, 2004).
In these models, higher-order kinematic terms related to the shell thickness are added to express
the in-plane displacements. Unfortunately, these models are not effective for complex cases with
local load or high transverse anisotropy. The layer-wised theory (Lu and Liu, 1992; Reddy, 2003)
can accurately give the global response and local response, but it contains a number of degrees of
freedom proportional to the number of layers, which makes the calculation cost of thick-section
laminated shells equivalent to that of 3D analysis. In addition, layer-wised theory is not easy
to realize in the displacement-based finite element method. Recently, the models introducing
nonlinear functions to describe the deformation of the straight line normal to the plate neutral
surface have been developed to allow determination of displacements and strains (Magnucki et
al., 2019). They encompass both the classical “broken line” (zigzag) theory and related theories
of layered structures, and may be promising in sandwich structures.

Based on the above, it is attractive to propose a model both of accuracy and efficiency for
composite laminated shells from the engineering point of view. Fortunately, the zigzag theory
(ZT) has the accuracy of the layer-wise theory and computational efficiency of the FSDT, in
which the piecewise function in the thickness direction is added to the in-plane displacement.
Therefore, the continuity of transverse shear stress is strengthened in the whole depth of com-
posite laminated structures. The main advantage of ZT is that the unknowns no longer depend
on the number of layers, which is very suitable for engineering applications. ZT has been ini-
tiated by Sciuva (1984). However, Averill and Yip (1996) pointed out two main shortcomings
of Sciuva’s ZT: (1) C1 continuous functions are required to approximate the deflection in the
finite element framework, because curvature is the second spatial derivative of the deflection
variables. (2) The transverse shear stress calculated by the constitutive equation erroneously
disappears along the fixed boundary. To solve the above problems, Tessler et al. (2010), Iurlaro
et al. (2015) put forward a RZT, which has been applied to laminated beams, plates, sandwich or
functionally graded structures. In this refined theory, a piecewise linear zigzag function (passing
through the interface of thin plates) was added to the expression of in-plane displacement to
improve the motion field of FSDT, and the lateral displacement was assumed to be constant
in the whole thickness range. Therefore, the above two shortcomings of the original ZT have
been overcome. In addition, the finite element is continuous in the shape function without any
lateral shear force anomaly, which has a high computational efficiency and is easy to implement.
Herein, it should be noted that the shear locking phenomenon may appear in the finite element
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model based on the Reissner-Mindlin theory, in which the Kirchhoff constraint is enforced as
the plate thickness tends to zero (Duan and Liang, 2003). This is typically too severe for the
finite element model, especially if low-order polynomials are employed (Duan and Liang, 2003).
Fortunately, it has been proved that the finite element models based on the RZT are simple,
robust and shear locking free (Eijo et al., 2013).
In view of the advantages of the RZT, a new shell model for composite laminates is proposed

for vibration and buckling analysis based on the RZT. According to d’Alembert’s principle,
the governing equations of composite laminated cylindrical/spherical shells are derived. Then,
frequencies and critical buckling loadings of composite laminated simply supported cylindrical
and spherical shells are given and compared with the classical theoretical solutions, 3D elastic
elasticity solutions and others in the literature. Finally, some conclusions are drawn in Section 5.

2. Displacements and strains of shells

Figure 1 schematically shows a shell with the curvature radius R1 and R2, wherein a, b and 2h
are length, width and thickness of the shell, respectively. In addition, 1 and 2 are in the directions
of the lines of curvature of the middle surface, and z is in the direction of the inward normal to
the middle surface.

Fig. 1. Schematic diagram of a spherical shell

Based on the RZT (Iurlaro et al., 2015), the displacement fields for a composite laminated
shell can be expressed as (Reddy and Liu, 1985)

u(k) =
(

1 +
z

R1

)

u(1, 2, t) + zθ1(1, 2, t) + φ
(k)
1 (z)ψ1(1, 2, t)

v(k) =
(

1 +
z

R2

)

v(1, 2, t) + zθ2(1, 2, t) + φ
(k)
2 (z)ψ2(1, 2, t)

w(k) = w(1, 2, t)

(2.1)

where u(k) and v(k) are the in-plane displacements, w(k) is the deflection of any point on the
shell. Correspondingly, u, v and w are the displacements on the neutral surface. t represents the
time variable. The superscript k is the number of layers in laminates. The thickness in each layer
is defined as [zk−1 − zk]. In addition, θi (i = 1, 2) are average rotation angles of the transverse
normal. φi and ψi are piecewise linear zigzag functions and amplitude functions of RZT.
The strain fields can be obtained in an efficient way according to (Reddy and Liu, 1985)

ε
(k)
11 = u,1 + zθ1,1 + φ

(k)
1 ψ1,1 +

w

R1
ε
(k)
22 = v,2 + zθ2,2 + φ

(k)
2 ψ2,2 +

w

R2

γ
(k)
12 = u,2 + v,1 + z(θ1,2 + θ2,1) + φ

(k)
1 ψ1,2 + φ

(k)
2 ψ2,1

γ1z = w,1 + θ1 + φ
(k)
1,zψ1 γ2z = w,2 + θ2 + φ

(k)
2,zψ2

(2.2)

where ε11, ε22 and γ12 represent in-plane strains. γ1z and γ2z are transverse shear strains. More-
over, “,” denotes the derivative with respect to the given coordinate.
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The constitutive equation in the k-th layer of the shell can be shown as
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(2.3)

In the formula, C
(k)
ij (i, j = 1, 2, 6) and Q

(k)
αβ (α, β = 1, 2) are the transformed elastic stiffness

coefficients at the k-th ply referred to the (x, y, z) coordinate system (Reddy and Liu, 1985). We
ignore σz due to the plane-stress condition (Tessler et al., 2010).
Moreover, the piecewise linear zigzag functions can be written as (Tessler et al., 2010),

a = 1, 2

φ(1)a = (z + h)
( Ga

Q
(1)
aa

− 1
)

k = 1

φ(k)a = (z + h)
( Ga

Q
(k)
aa

− 1
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+
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(2.4)

in which
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[

(
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∫
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,

(
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22
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(2.5)

3. Governing equations and boundary conditions

In this Section, the governing equations and related boundary conditions for composite laminated
shells are derived based on d’Alembert’s principle (Iurlaro et al., 2015).
The principle of virtual work can be expressed as

δU + δW1 − δW = 0 (3.1)

where δU , δW and δW1 are the internal, external virtual works and the work done by the inertia
force, respectively. They can be expressed as

δU =

∫
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=
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(3.2)
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δW1 = −

∫
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h
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∫

sm

[(

I0ü+
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where Sm is the neutral surface, T1, T2 and Tz are traction stresses prescribed on the boundary
surface, and q is the external force applied to the middle surface along the z direction. The
superscript n = 1, 2. cσ is the circumference of a hyperbolic shell. The forces and moments are
defined as
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In addition, the mass moment of inertia is defined as follows
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(3.4)

where ρ(k) is density of the material in the k-th layer.
Substituting (3.2) into (3.1) and distributing the integral, the equilibrium equation expressed

by the internal forces and moments can be obtained

δu : N1,1 +N12,2 = I0ü+
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δθ2 : M12,1 +M2,2 −Q2 = I1v̈ +
I2v̈

R2
+ I2θ̈2 + I

φ2
1 ψ̈2

δψ1 : Mφ1,1 +M
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12,2 −Q

φ
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+ Iφ11 θ̈1 + I

φ1
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φ
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where

Λ(w) = (Λ1w,1 + Λ12w,2),1 + (Λ12w,1 + Λ2w,2),2 (3.6)

In the above, Λ1, Λ2 and Λ12 are critical loads.

The boundary conditions are

u = u or N1n1 +N12n2 = N1n v = v or N12n1 +N2n2 = N2n

w = w or Q1n1 +Q2n2 = N zn θ1 = θ1 or M1n1 +M12n2 =M 1n

θ2 = θ2 or M12n1 +M2n2 =M2n ψ1 = ψ1 or Mφ1 n1 +M
φ1
12 n2 =M

φ
1n

ψ2 = ψ2 or Mφ221 n1 +M
φ
2 n2 =M

φ
2n

(3.7)

Therefore, the constitutive relation of composite laminated shells can be rewritten in a matrix
form
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




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(3.8)

The undefined components in (3.8) are shown in Appendix A. It is noted that the present
shell model can degenerate into the following models:

1) a spherical shell when R1 = R2 = R,

2) a cylindrical shell when R1 =∞,

3) a plate when R1 = R2 =∞.

4. Numerical examples

4.1. Series solutions under a simply supported boundary condition

In this Section, series solutions are given for vibration and buckling analysis of the composite
laminated shell under a simply supported boundary condition. The simply supported conditions
on four sides yield that

v = w = θ2 = ψ2 = 0 N1 =M1 =M
θ
1 = 0 along x ∈ [0, a] (4.1)

and

u = w = θ1 = ψ1 = 0 N2 =M2 =M
θ
2 = 0 along y ∈ [0, b] (4.2)
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Therefore, the trial function satisfying all boundary conditions can be taken as follows by
omitting the terms related to the critical loads

w =W sin
mπξ1
a
sin

nπξ2
b
exp(iωmnt)
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
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a
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(4.3)

where U , V ,W ,Θ1,Θ2, Ψ1, Ψ2 are unknown amplitudes of the variables, which can be determined
by satisfaction of the equilibrium equations. ωmn are circular frequencies. ξ1 and ξ2 represent
coordinates of the direction 1 and 2. In addition, i2 = −1.
Substitute equations (4.3) into equations (3.5) to obtain the following five homogeneous

algebraic equations

(K− ω2M)[U, V,W, θ1, θ2, ψ1, ψ2]
T = 0 (4.4)

in which K is the stiffness matrix andM is the mass matrix. ω is the natural frequency.
For a free vibration problem, solving the natural vibration frequency of laminated shells can

be transformed into solving the eigenvalue problem of Eq. (4.4).
Moreover, the natural frequency disappears in a buckling problem, and the stability equation

can be expressed as the following eigenvalue form in a uniaxial compression case

(K+ Λ1G)[U, V,W, θ1, θ2, ψ1, ψ2]
T = 0 (4.5)

where G is the geometric matrix caused by the initial axial stress. Λ1 is the critical buckling
load.

4.2. Free vibration of spherical and cylindrical shells

The free vibration analysis is firstly carried out in cross-ply composite laminated cylindrical
shells. In order to evaluate the accuracy of the present model, the results are compared with
the existing ones, i.e. 3D exact/first-order/high-order and others. It is noted that the materials
and geometric parameters used in this Section are the same as those in the literature. If without
another statement, the material parameters in the following are taken as

E1
E2
= 25 G12 = G13 = 0.5E2 G23 = 0.2E2

ν12 = ν13 = ν23 = 0.25

(4.6)

The fundamental frequencies without the other statement are normalized as

̟ =
ωa2

100(2h)

√

ρ

E2
(4.7)

Table 1 lists the fundamental frequencies of a 0◦/90◦ composite laminated cylindrical shell
in different radius-to-side and thickness-to-side ratios. It is noted that the Poisson ratios are
taken as ν13 = 0.03 and ν23 = 0.4 in this table (Bhimaraddi, 1991). The results predicted
by the present model are assessed by comparing with the 3D exact solutions and other ones
based on the parabolic shear deformation theory (PSD), FSDT and CST. It is obvious that
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the present results agree well with the 3D exact ones, which shows the accuracy of the present
model. In addition, the difference between the PSD and present model is decreased with the
increasing radius-to-side ratios. The results based on the FSDT predicts lower values in most
cases, but the CST predicts higher values. Table 2 further examines the accuracy of the present
model by comparing with another 3D model proposed by Ye and Soldatos (1994). Moreover, the
results predicted by the high-order zigzag model and refined sinusoidal model are also listed for
comparison. It is observed that Kumar’s high-order zigzag model has not significantly improved
the accuracy in comparison with the linear zigzag model in the present two-layer case. This
phenomenon is also shown in Touratier’s refined sinusoidal model, wherein the sine function
may be expanded by many polynomial terms. Therefore, the efficiency of the present model is
shown due to no high-order terms in the displacement fields.

Table 1. Non-dimensional fundamental frequencies of a 0◦/90◦ composite laminated cylindrical
shell in different radius-to-side and thickness-to-side ratios (̟ = ωa

√

ρ/E2, R1 =∞, a = b)

R2/a 2h/a 3D [2] Present PSD [2] FSDT [2] CST [2]

0.05 0.78683 0.783823 0.79993 0.79798 0.80580
1 0.1 1.04085 1.05376 1.09819 1.07475 1.14313

0.15 1.29099 1..32041 1.38174 1.33274 1.54124

0.05 0.57252 0.573939 0.58000 0.57733 0.58723
2 0.1 0.93627 0.939802 0.95664 0.93653 1.01398

0.15 1.25377 1.26069 1.28933 1.23527 1.45781

0.05 0.52073 0.521585 0.52516 0.52222 0.53294
3 0.1 0.91442 0.916098 0.92642 0.90563 0.98505

0.15 1.24500 1.25042 1.20563 1.21316 1.43751

0.05 0.50110 0.501663 0.50415 0.50109 0.51217
4 0.1 0.90613 0.907888 0.91506 0.89403 0.97408

0.15 1.24090 1.24752 1.25977 1.20454 1.42910

0.05 0.49167 0.492143 0.49402 0.49091 0.50216
5 0.1 0.90200 0.904227 0.90953 0.88840 0.96870

0.15 1.23849 1.24652 1.25551 1.20020 1.42464

0.05 0.47859 0.479236 0.47997 0.47677 0.48827
10 0.1 0.89564 0.899883 0.90150 0.88026 0.96074

0.15 1.23374 1.24628 1.24875 1.19342 1.41709

0.05 0.47509 0.476069 0.47625 0.47304 0.48459
20 0.1 0.89341 0.899241 0.89904 0.87779 0.95819

0.15 1.23140 1.24704 1.24626 1.19100 1.41400

[2] – Bhimaraddi (1991)

Table 2. Non-dimensional fundamental frequencies of a 0◦/90◦ composite laminated cylindrical
shell in a fixed thickness-to-side ratio (̟ = ωa

√

ρ/E2, a = b, 2h/a = 0.1, R1 =∞)

Theory
1
Diff

2
Diff

4
Diff

5
Diff

10
Diff

20
Diff

R/a [%] [%] [%] [%] [%] [%]

[24] 1.06973 0 0.94951 0 0.91155 0 0.90616 0 0.89778 0 0.89477 0

Present 1.05376 1.49 0.93980 1.02 0.90789 0.40 0.90423 0.21 0.89988 −0.23 0.89924 −0.5

[8] 1.06545 0.4 0.94891 0.06 0.91368 −0.23 0.90892 −0.30 0.90180 −0.45 0.89946 −0.52

[23] – – – – – – 0.91060 −0.49 0.90257 −0.53 0.90011 −0.60

[24] – Ye and Soldatos (1994), [8] – Kumar et al. (2013), [23] – Touratier (1992)
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Table 3 shows the dimensionless frequencies of the composite laminated cylindrical shell in
different lamination schemes and length-to-radius ratios. It is noted that the material parameters
in Table 3 are taken as

E1
E2
= 40 E3 = E2 G12 = G13 = 0.6E2

G23 = 0.5E2 ν12 = ν13 = ν23 = 0.25

(4.8)

Table 3. Non-dimensional fundamental frequencies of a composite laminated circular cylindrical
shell in different lamination schemes and length-to-radius ratios (2h/R2 = 0.2, R1 =∞, a = L)

Theory
0◦/90◦ 0◦/90◦/0◦

TAEs
L/R2 = 1 Diff L/R2 = 2 Diff L/R2 = 1 Diff L/R2 = 2 Diff

[13] 0.1012 0 0.1908 0 0.1226 0 0.2242 0 0

Present 0.1081 6.82% 0.2157 13.05% 0.1139 7.10% 0.2240 0 6.74%

[10] 0.0984 2.77% 0.1823 4.45% 0.1101 10.20% 0.1994 11.06% 7.12%

[9] – – – – 0.1014 17.29% 0.1885 15.92% 16.61%

HSDT [7] 0.0804 20.55% 0.1566 17.92% 0.1007 17.86% 0.1777 20.74% 19.27%

FSDT [7] 0.0791 21.84% 0.1552 18.66% 0.1004 18.11% 0.1779 20.65% 19.82%

[13] – Malekzadeh et al. (2008), [10] – Li and Wang (2016)
[9] – Lam et al. (2000), [7] – Khdeir et al. (1989)
TAEs – calculated by averaging absolute values of all particular errors

The 3D exact solutions by Malekzadeh et al., (2008) are utilized as a benchmark to evaluate
the accuracy of the present new model. It is noted that the state-space technique solutions of
Khdeir et al. (1989), Ritz method results of Lam et al. (2000) and asymptotic solutions of Li and
Wang (2016) are also listed for comparison. It is found that the accuracy of the fundamental
frequencies predicted by the present model is the highest in comparison with other simplified 2D
models. In addition, the results show that the TAEs of previous low/high-order models (FSDT/
HSDT) are over 10%, which is three times as high as those predicted by the present model.
Tables 4 and 5 further show the dimensionless fundamental frequencies in different lami-

nation schemes, side-to-radius ratios and side-to-thickness ratios. It is observed that there is a
tiny difference among the five models, i.e. the present, FSDT, Reddy’s HSDT, Mantari’s new
HSDT and Thakur’s new HSDT in a large side-to-thickness ratio. This is because the effect
of transverse shear strains is very weak in this case, and even the classical plate/shell theory
has a good prediction. However, the difference becomes obvious when a/2h = 10. In general,
it is observed that the present solutions are roughly consistent with the previous high-order
models in the 0◦/90◦ and 0◦/90◦/0◦ cases, while the model based on the FSDT under-predicts
the fundamental frequencies in the 0◦/90◦ case and over-predicts those in the 0◦/90◦/0◦ case.
In addition, it is different from the results in Table 3, which shows that the first-order model
agrees well with the 3D exact solutions in the 0◦/90◦ laminate case due to the shear correction
coefficient. Nevertheless, it highly depends on the material and design parameters, such as the
elastic modulus and ply angle. Therefore, the shear correction coefficients are different in dif-
ferent cases. It is noted that the present model shows a high accuracy in the 0◦/90◦/0◦ case in
comparison with the 3D exact solutions.
Moreover, the present model is very efficient with respect to those high-order models. By

comparing with Mantari’s new HSDT (Mantari et al., 2011), the present linear zigzag terms
are more convenient than the Mantari shear strain shape function 2.85−2(z/2h)

2

z. It is noted
that some logarithmic terms even show in the strain components in Mantari’s new HSDT. By
comparing with Thakur’s new HSDT both of them have 7 unknowns, but z2 and z3 terms occur
in the displacement fields in Thakur’s new HSDT (Thakur et al., 2017). In summary, the present
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Table 4. Non-dimensional fundamental frequencies of a composite laminated cylindrical
shell/plate (̟ = ωa2/(2h)

√

ρ/E2, a = b)

R2/a Theory
0◦/90◦ 3D [3] 0◦/90◦/0◦ 3D [3]

R1 =∞ a/2h = 100 a/2h = 10 a/2h = 10 a/2h = 100 a/2h = 10 a/2h = 10

5

Present 16.6874 9.0423 8.7954 20.3269 11.6015 11.5007
FSDT [11] 16.6880 8.9082 – 20.332 12.2070 –
HSDT [11] 16.6900 9.0230 – 20.3300 11.8500 –
[14] 16.7030 9.1254 – 20.3277 11.7469 –
[22] 16.6846 8.9560 – 20.2959 11.7440 –

10

Present 11.8384 8.9988 8.8530 16.6126 11.5586 11.4630
FSDT [11] 11.8310 8.8879 – 16.6250 12.1730 –
HSDT [11] 11.8400 8.9790 – 16.6200 11.8000 –
[14] 11.8440 9.0453 – 16.6156 11.7053 –
[22] 11.8412 8.9474 – 16.6152 11.7501 –

20

Present 10.2683 8.9924 8.8829 15.5423 11.5478 11.4535
FSDT [11] 10.2650 8.8900 – 15.5560 12.1660 –
HSDT [11] 10.2700 8.9720 – 15.5500 11.7910 –
[14] 10.2707 9.0207 – 15.5458 11.6948 –
[22] 10.2786 8.9542 – 15.5593 11.7540 –

50

Present 9.7834 8.9935 8.9013 15.2288 11.5449 11.4508
FSDT [11] 9.7816 8.8951 – 15.2440 12.1630 –
HSDT [11] 9.7830 8.9730 – 15.2400 11.7900 –
[14] – – – – – –
[22] 9.7969 8.9618 – 15.2507 11.7566 –

100

Present 9.7122 8.9947 8.9075 15.1835 11.5445 11.4504
FSDT [11] 9.7180 8.8974 – 15.1980 12.1630 –
HSDT [11] 9.7120 8.9750 – 15.1900 11.7900 –
[14] 9.7127 9.0085 – 15.1872 11.6915 –
[22] 9.7264 8.9649 – 15.2061 11.7575 –

Plate

Present 9.6885 8.9964 8.9131 15.1683 11.5443 11.2503
FSDT [11] 9.6873 8.8998 – 15.1830 12.1620 –
HSDT [11] 9.6880 8.9760 – 15.1700 11.7900 –
[14] 9.6886 9.0065 – 15.1721 11.6913 –
[22] 9.7031 8.9684 – 15.1913 11.7584 –

[3] – Chern and Chao (2000), [11] – Lu and Liu (1992)
[14] – Mantari et al. (2011), [22] – Thakur et al. (2017)

model not only has a high accuracy, but also has a high efficiency to deduce the finite element
method for analyzing large-scale laminated structures in the future.

4.3. Axial compression buckling of a circular cylindrical shell

In this Section, we pay attention to the buckling analysis of composite laminated circular
cylindrical shells under the uniaxial compression. The difference between the results predicted
by the present model and the models based on the FSDT/HSDT are shown in Fig. 2 in different
thickness-to-radius ratios. The material constants are taken as (30).

Figure 2 shows the trend of critical buckling loads. In the thickness-to-radius ratio, the radius
is constant. It can be seen that the results predicted by the present model are consistent with
the results based on the FSDT and Reddy’s HSDT, when the radius-to-thickness ratio is small.
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Table 5. Free vibration of a composite laminated spherical shell/plate

R/a Theory
0◦/90◦ [3] 0◦/90◦/0◦ [3]

a/2h = 100 a/2h = 10 a/2h = 10 a/2h = 100 a/2h = 10 a/2h = 10

5

Present 28.8392 9.3543 9.2008 31.0142 11.7925 11.6713
FSDT [11] 28.8250 9.2309 – 30.9930 12.3720 –
HSDT [11] 28.8400 9.3370 – 31.0200 12.0600 –
[14] 28.8391 9.3654 – 31.0161 11.9593 –
[22] 28.8019 9.2676 – 30.9669 11.9484 –

10

Present 16.7121 9.0874 8.9870 20.3463 11.6017 11.5140
FSDT [11] 16.7060 8.9841 – 20.3470 12.2150 –
HSDT [11] 16.7100 9.0860 – 20.3500 11.8600 –
[14] 16.7121 9.0980 – 20.3492 11.7592 –
[22] 16.7031 9.0408 – 20.3415 11.8009 –

20

Present 11.8442 9.0191 8.9322 16.6164 11.5559 11.4702
FSDT [11] 11.8410 8.9212 – 16.6270 12.1760 –
HSDT [11] 11.8400 8.9990 – 16.6200 11.8100 –
[14] 11.8442 9.0295 – 16.6201 11.7084 –
[22] 11.8499 8.9846 – 16.6306 11.7662 –

50

Present 10.0647 8.9999 8.9168 15.4058 11.5448 11.4554
FSDT [11] 10.0630 8.9034 – 15.4240 12.1650 –
HSDT [11] 10.0600 8.9800 – 15.4200 11.7900 –
[14] – – – – – –
[22] 10.0774 8.9700 – 15.4305 11.7583 –

100

Present 9.7839 9.9972 8.9145 15.2289 11.5439 11.4523
FSDT [11] 9.7826 8.9009 – 15.2440 12.1630 –
HSDT [11] 9.7840 8.9770 – 15.2400 11.7900 –
[14] 9.7840 9.0074 – 15.2327 11.6920 –
[22] 9.7980 8.9684 – 15.2514 11.7578 –

Plate

Present 9.6885 8.9964 8.9138 15.1682 11.5443 11.4503
FSDT [11] 9.6873 8.8998 – 15.1830 12.1620 –
HSDT [11] 9.6880 8.9760 – 15.1700 11.7900 –
[14] 9.6886 9.0065 – 15.1721 11.6913 –
[22] 9.7031 8.9684 – 15.1913 11.7584 –

[3] – Chern and Chao (2000), [11] – Lu and Liu (1992)
[14] – Mantari et al. (2011), [22] – Thakur et al. (2017)

However, obvious differences appear with the increasing thickness-to-radius ratios. For example,
the first-order model is relatively deviated from the high-order model when 2h/R = 0.3. This is
because the FSDT assumes that the in-plane displacement changes linearly along the thickness,
which artificially increases the stiffness of the structure. While Reddy’s high-order model uses a
third-order function to describe the in-plane displacement, such that it is generally closer to the
actual situation than the first-order model. Between the above two models, the present model is
based on kinematics of the FSDT and adds an in-plane linear zigzag function along the thickness
direction, such that the shear correction coefficients are not needed any more. It is noted that
the differences between the present model and the models based on the FSDT and HSDT are
about 5% when 2h/R = 0.3.
Table 6 further lists the non-dimensional critical buckling loads in different laminates and

shell theories. It is observed that the CST over-predicts the critical buckling load. In addition,
the results are consistent with the high-order model and the first-order model with the shear
correction coefficient.
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Fig. 2. Variation of critical buckling loads with different thickness-radius ratios: (a) 0◦/90◦/0◦,
(b) 0◦/90◦/0◦/90◦

Table 6. Non-dimensional critical buckling loads in different laminates and shell theories
(Λ = ΛL2/(100(2h)3E2), L/R2 = 1, R2/2h = 10)

Lamination Theory Critical buckling loads

0◦/90◦

Present 0.1662
HSDT (Khdeir et al., 1989) 0.1687
FSDT (Khdeir et al., 1989) 0.1670
CST (Khdeir, et al., 1989) 0.1817

0◦/90◦/0◦

Present 0.2858
HSDT (Khdeir et al., 1989) 0.2794
FSDT (Khdeir et al., 1989) 0.2813
CST (Khdeir et al., 1989) 0.4186

0◦/90◦/0◦/ . . . /10 layers

Present 0.2758
HSDT (Khdeir et al., 1989) 0.2896
FSDT (Khdeir et al., 1989) 0.2898
CST (Khdeir et al., 1989) 0.3395

5. Conclusions

In this paper, the RZT is extended to free vibration and buckling problems of composite lami-
nated cylindrical/spherical shells. Based on d’Alembert’s principle, the linear eigenvalue prob-
lems of free vibration and buckling of composite laminated cylindrical/spherical shells are solved.
After studying in detail the effect of lamination schemes and design parameters on the dynamic
and stable performance, some observations can be drawn as follows:

• For free vibration problems, the results show that the present model can accurately predict
the dynamic response of composite laminated shells. The predicted natural frequencies are
more consistent with the 3D exact solutions.

• For buckling problems, obvious differences among the present model and models based on
the FSDT/HSDT appear with the increasing thickness-to-radius ratios.

• The modulus ratio and lamination schemes have a great effect on the accuracy of the
simplified shell theories.

• The predictive ability of the RZT on composite laminated shells has been rigorously eval-
uated, which proves its superior efficiency, accuracy and wide applicability.
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A. Appendix

According to Tessler et al. (2010), the components in (3.5) are listed as follows

C =







C11 C12 C16
C12 C22 C26
C16 C26 C66







(k)

Bϕ =









z ϕ
(k)
1 0 0 0 0 0

0 0 z ϕ
(k)
2 0 0 0

0 0 0 0 z ϕ
(k)
1 ϕ

(k)
2









(A.1)

Q =

[

Q22 Q12
Q12 Q11

](k)

Bβ =

[

1 β
(k)
2 0 0

0 0 1 β
(k)
1

]

(A.2)

A3×3 =

h
∫

−h

C dz B3×7 =

h
∫

−h

CBφ dz

D7×7 =

h
∫

−h

BTφCBφ dz G =

h
∫

−h

BTβQBβ dz

(A.3)

eTm =
[

u,1 +
w

R1
, v,2 +

w

R2
, u,2 + v,1

]

eTb = [θ1,1, ψ1,1, θ2,2, ψ2,2, θ1,2 + θ2,1, ψ1,2, ψ2,1] eTs = [w,2 + θ2, ψ2, w,1 + θ1, ψ1]
(A.4)
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