PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Topographic surface modelling using raster grid datasets by GMT: example of the Kuril-Kamchatka Trench, Pacific Ocean

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study area is focused on the Kuril–Kamchatka Trench, North Pacific Ocean. This region is geologically complex, notable for the lithosphere activity, tectonic plates subduction and active volcanism. The submarine geomorphology is complicated through terraces, slopes, seamounts and erosional processes. Understanding geomorphic features of such a region requires precise modelling and effective visualization of the high-resolution data sets. Therefore, current research presents a Generic Mapping Tools (GMT) based algorithm proposing a solution for effective data processing and precise mapping: iterative module-based scripting for the automated digitizing and modelling. Methodology consists of the following steps: topographic mapping of the raster grids, marine gravity and geoid; semi-automatic digitizing of the orthogonal cross-section profiles; modelling geomorphic trends of the gradient slopes; computing raster surfaces from the xyz data sets by modules nearneighbor and XYZ2grd. Several types of the cartographic projections were used: oblique Mercator, Mercator cylindrical, conic equal-area Albers, conic equidistant. The cross-section geomorphic profiles in a perpendicular direction across the two selected segments of the trench were automatically digitized. Developed algorithm of the semi-automated digitizing of the profiles enabled to visualize gradients of the slope steepness of the trench. The data were then modelled to show gradient variations in its two segments. The results of the comparative geomorphic analysis of northern and southern transects revealed variations in different parts of the trench. Presented research provided more quantitative insights into the structure and settings of the submarine landforms of the hadal trench that still remains a question for the marine geology. The research demonstrated the effectiveness of the GMT: a variety of modules, approaches and tools that can be used to produce high-quality mapping and graphics. The GMT listings are provided for repeatability.
Rocznik
Tom
Strony
9--22
Opis fizyczny
Bibliogr. 68 poz., rys., wykr.
Twórcy
  • College of Marine Geo-sciences, Ocean University of China, 238 Songling Rd., Laoshan, 266100, Qingdao, Shandong Province, People's Republic of China
Bibliografia
  • [1] Altuntas, C. (2019). Urban area change visualization and analysis using high density spatial data from time series aerial images. Reports on Geodesy and Geoinformatics, 107:1-12, doi:l0.2478/rgg-2019-0001.
  • [2] Avdeiko, G. P., Savelyev, D. P., Palueva, A. A., and Popruzhenko, S. V. (2007). Evolution of the Kuril-Kamchatka volcanic arcs and dynamics of the Kamchatka-Aleutian junction. Geophysical Monograph Series American Geophysical Union, 172:37-55, doi:10.1029/172GM04.
  • [3] Banasik, P. and Bujakowski, K. (2017). The Use of Quasigeoid in Leveling Through Terrain Obstacles. Reports on Geodesy and Geoinformatks, 104:57-64, doi:10.1515/rgg-2017-0015.
  • [4] Barr, I. D. and Spagnolo, M. (2013). Palaeoglacial and palaeoclimatic conditions in the NW Pacific, as revealed by a morphometric analysis of cirques upon the Kamchatka Peninsula. Geomorphology, 192:15-29, doi:10.1016/j.geomorph.2013-03.011.
  • [5] Bazan-Krzywoszanska, A. and Bereta, M. (2018). The use of urban indicators in forecasting a real estate value with the use of deep neural network. Reports on Geodesy and Geoinformatics, 106:25-34, doi:10.2478/rgg-2018-0011.
  • [6] Belkin, I. M., Cornillon, P. C, and Sherman, K. (2009). Fronts in large marine ecosystems. Progress in Oceanography, 81:223-236, doi:10.1016/j.pocean.2009.04.015.
  • [7] Boutelier, D. and Oncken, 0. (2011). 3-D thermo-mechanical laboratory modeling of plate tectonics: modeling scheme, technique and first experiments. Journal of Geophysical Research Atmospheres, Solid Earth, 2(l):35-51, doi:10.5194/se-2-35-2011.
  • [8] Brandt, A., Alalykina, I., Fukumori, H., Golovand, O., Kniesz, K., Lavrenteva, A., Lörz, A.-N., Malyutina, M., Philipps-Bussau, K., and Stransky, B. (2018). First insights into macrofaunal composition from the SokhoBio expedition T (Sea of Okhotsk, Bussol Strait and northern slope of the Kuril-Kamchatka Trench). Deep-Sea Research Part II, 154:106-120, doi:10.1016/j.dsr2.2018.05.022.
  • [9] Brown, C. J., Sameoto, J. A., and Smith, S. J. (2012). Multiple methods, maps, and management applications: Purpose made seafloor maps in support of ocean management, journal of Sea Research, 72:1-13, doi:10.5194/se-2-35-2011.
  • [10] Chen, J. and King, S. D. (1998). The influence of temperature and depth dependent viscosity on geoid and topography profiles from models of mantle convection. Physics of the Earth and Planetary Interiors, 106(1-2):75-91, doi:10.1016/S0031-9201(97)00110-6.
  • [11] Cortés-Aranda, J., editor (2018). Rapid Late Pleistocene uplift in the Mejillones Peninsula, northern Chile subduction zone (23.5°S): insights from 10Be dated marine abrasion terraces., volume 4 of 5, Possidi, Greece.
  • [12] Danovaro, R., Della Croce, N., Dell'Anno, A., and Pusceddu, A. (2003). A depocenter of organic matter at 7800 m depth in the SE Pacific Ocean. Deep-Sea Research Parti, 50:1411-1420, doi:10.1016/j.dsr.2003-07-001.
  • [13] ESRI Team, E. (2010). ESRIArcGIS. ESRI, Redlands, CA, U.S.A.
  • [14] Feng, W., Samsonov, S., Almeida, R., Yassaghi, A., Li, J., Qiu, Q., Li, P., and Zheng, W. (2018). Geodetic Constraints of the 2017 MW7.3 Sarpol Zahab, Iran Earthquake, and Its Implications on the Structure and Mechanics of the Northwest Zagros Thrust-Fold Belt. Geophysical Research Letter, 45(14):1- 9, doi:10.1029/2018GL078577
  • [15] Fischer, V., Elsner, N. O., Brenke, N., Schwabe, E., and Brandt, A. (2015). Plastic pollution of the Kuril-Kamchatka Trench area (NW pacific). Deep-Sea Research Part II, 111:399-405, doi:10.1016/j.dsr2.2014.08.012.
  • [16] Gallo, N. D., Cameron, J., Hardy, K., Fryer, P., Bartlett, D. H., and Levin, L. A. (2015). Submersible- and lander-observed community patterns in the Mariana and New Britain trenches: Influence of productivity and depth on epibenthic and scavenging communities. Deep-Sea Research Parti, 99:119-133, doi:10.1016/j.dsr.2014.12.012.
  • [17] Gauger, S., Kuhn, G., Gohl, K., Feigl, T., Lemenkova, P., and Hillenbrand, C. (2007). Swath-bathymetric mapping. In Gohl, K., editor, The Expedition ANT-XXIII/4 of the Research Vessel Polarstern in 2006, pages 38-45. Alfred Wegener Institute für Polar- und Meeresforschung, doi:10013/epic.27102.d001.
  • [18] Harris, P. T. and Whiteway, T. (2011). Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Marine Geology, 285:69-86, doi:10.1016/j.margeo.2011.05.008.
  • [19] Hatori, T. (1971). Tsunami sources in Hokkaido and southern Kurile regions. Bulletin of the Earthquake Research Institute, 49:63-75.
  • [20] Hayes, D. E. (1966). A geophysical investigation of the Peru-Chile Trench. Marine Geology, 4(5):309-351, doi:l0.1016/0025-3227(66)90038-7.
  • [21] Hlotov, V., Hunina, A., Yurkiv, M., and Siejka, Z. (2019). Determining of correlation relationship between roll, pitch, and yaw for UAVs. Reports on Geodesy and Geoinformatics, 107(5):13-18, doi:10.2478/rgg-2019-0002.
  • [22] Ichino, M. C, Clark, M. R., Drazen, J. C, Jamieson, A., Jones, D. O. B., Martin, A. P., Rowden, A. A., Shank, T. M., Yancey, P. H., and Ruhl, H. A. (2015). The distribution of benthic biomass in hadal trenches: A modelling approach to investigate the effect of vertical and lateral organic matter transport to the seafloor. Deep-Sea Research Part 1,100:21-33, doi:10.1016/j.dsr.2015.01.010.
  • [23] Itoh, M., Kawamura, K., Kitahashi, T., Kojima, S., Katagiri, H., and Shimanaga, M. (2011). Bathymetric patterns of meiofaunal abundance and biomass associated with the Kuril and Ryukyu trenches, western North Pacific Ocean. Deep-Sea Research Part I, 58:86-97, doi:10.1016/j.dsr.2010.12.004.
  • [24] Janečka, K. (2019). Transformation of 3D geospatial data into CityGML - a case of Prague. Reports on Geodesy and Geoinformatics, 107:41-48, doi:10.2478/rgg-2019-0005.
  • [25] Klaučo, M., Gregorová, B., Stankov, U., Marković, V., and Lemenkova, P. (2013). Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area. Central European Journal of Geosciences, 5(l):28-42, doi:10.2478/s13533-012-0120-0.
  • [26] Klaučo, M., Gregorová, B., Stankov, U., Marković, V., and Lemenkova, P. (2017). Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural Region. Environmental Engineering and Management Journal, 2(16):449-458, doi:10.30638/eemj.2017.045.
  • [27] Lay, T., Kanamori, H., Ammon, C. J., Hutko, A. R., Furlong, K., and Rivera, L. (2009). The 2006-2007 Kuril Islands great earthquake sequence. Journal of Geophysical Research Atmospheres, 114(B11308):1-3l, doi:10.1029/2008JB006280.
  • [28] Lee, J.-H., Kim, T., Pang, I.-C, and Moon, J.-H. (2018). 4DVAR data Assimilation with the Regional Ocean Modeling System (ROMS): Impact on the Water Mass Distributions in the Yellow Sea. Ocean Science Journal, 53(2):165-178, doi:10.1007/s12601-018-0013-3.
  • [29] Lemenkova, P. (2018a). Factor Analysis by R Programming to Assess Variability Among Environmental Determinants of the Mariana Trench. Turkish Journal of Maritime and Marine Sciences, 4:146-155, doi:10.6084/m9.figshare.7358207.
  • [30] Lemenkova, P. (2018b). R scripting libraries for comparative analysis of the correlation methods to identify factors affecting Mariana Trench formation. Journal of Marine Technology and Environment, 2:35-42, doi:10.6084/m9-figshare.7434167.
  • [31] Lemenkova, P. (2019a). K-means Clustering in R Libraries {cluster} and {factoextra} for Grouping Oceanographic Data. International Journal of Informatics and Applied Mathematics, 2:1-26, doi:10.6084/m9.figshare.9891203.
  • [32] Lemenkova, P. (2019b). Numerical Data Modelling and Classification in Marine Geology by the SPSS Statistics. International Journal of Engineering Technologies, 5:90-99, doi:10.6084/m9.figshare.8796941.
  • [33] Lemenkova, P. (2019c). Processing oceanographic data by Python libraries NumPy, SciPy and Pandas. Aquatic Research, 2:73-91, doi:10.3153/AR19009.
  • [34] Lemenkova, P. (20i9d). Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language. Geodesy and Cartography, 45:57-84, doi:10.3846/gac.2019-3785.
  • [35] Lemenkova, P. (20i9e). Testing Linear Regressions by StatsModel Library of Python for Oceanological Data Interpretation. Aquatic Sciences and Engineering, 34:51-60, doi:10.26650/ASE2019547010.
  • [36] Lemenkova, P., Promper, C, and Glade, T. (2012). Economic Assessment of Landslide Risk for the Waidhofen a.d. Ybbs Region, Alpine Foreland, Lower Austria. In Eberhardt, E., Froese, C, Turner, A. K., and Leroueil, S., editors, Protecting Society Through Improved Understanding. Proceedings of the nth International Symposium on Landslides and the 2nd North American Symposium on Landslides and Engineered Slopes, pages 279-285. doi:10.6084/m9-figshare.7434230.
  • [37] Lobkovsky, L. I. and Sorokhtin, O. G. (1979). Deformation of lithospheric plates in subduction zones. Oceanography and Geophysics of the Ocean. Nauka, Moscow, Russia, 2 edition.
  • [38] Maiorova, A. S. and Adrianov, A. V. (2018). Deep-sea spoon worms (Echiura) from the Sea of Okhotsk and the adjacent T slope of the Kuril- Kamchatka Trench. Deep-Sea Research Part II, 154:177-186, doi:10.1016/j.dsr2.2018.07.010.
  • [39] Meibom, A. and Anderson, D. L. (2003). The statistical upper mantle assemblage. Earth and Planetary Science Letters, 217:123-139, doi:10.1016/S0012-821X(03)00573-9.
  • [40] Metz, M., Rocchini, D., and Neteler, M. (2014). Surface Temperatures at the Continental Scale: Tracking Changes with Remote Sensing at Unprecedented Detail. Remote Sensing, 6:3822-3840, doi:10.3390/rs6053822.
  • [41] Montaggioni, L. F., Salvat, B., Aubanel, A., Eisenhauer, A., and Martin-Garin, B. (2018). The mode and tim-ing of windward reef-island accretion in relation with Holocene sea-level change: A case study from Takapoto Atoll, French Polynesia. Geomorphology, 318:320-335, doi:10.1016/j.geomorph.2018.06.015.
  • [42] Persits, F. M., Ulmishek, G. F., and Steinshouer, D. W., editors (1997). Maps showing geology, oil and gas fields and geologic provinces of the former Soviet Union, volume 97-470E, Denver, Colorado, U. S. U.S. Geological Survey, Open-File Report.
  • [43] QGIS (2019). QGIS User Guide Release 3.4. QGIS Project.
  • [44] Ramberg, H. (1967). Gravity, Deformation and the Earth's Crust: As Studied by Centrifuged Models. Academic Publishing, London, U. K.
  • [45] Ravisankar, R., Chandramohan, J., Chandrasekaran, A., Jebakumar, J. P. P., Vijayalakshmi, I., Vijayagopal, P., and Venkatraman, B. (2015). Assessments of radio- activity concentration of natural radionuclides and radiological hazard indices in sediment samples from the East coast of Tamilnadu, India with statistical approach. Marine Pollution Bulletin, 97(1-2):4l9-430, doi:10.1016/j.marpolbul.20l5.05.058.
  • [46] Rovere, M., Pellegrini, C, Chiggiato, J., Campiania, E., and Trincardi, F. (2019). Impact of dense bottom water on a continental shelf: An example from the T SW Adriatic margin. Marine Geology, 408:123-143, doi:10.1016/j.margeo.2018.12.002.
  • [47] Sandwell, D. T., Garcia, E., Soofi, K., Wessel, P., and Smith, W. H. F. (2013). Towards 1 mGal Global Marine Gravity from CryoSat-2, Envisat, and Jason-i. The Leading Edge, 32(8):892-899, doi:10.1190/tle32080892.1.
  • [48] Sandwell, D. T., Müller, R. D., Smith, W. H. F., Garcia, E., and Francis, R. (2014). New global marine gravity model from CryoSat-2 and Jason-i reveals buried tectonic structure. Science, 346(6205):65-67, doi:10.m6/science.1258213.
  • [49] Sandwell, D. T. and Smith, W. H. F. (2009). Global marine gravity from retracked Geosat and ERS-i altimetry: Ridge Segmentation versus spreading rate. Journal of Geophysical Research Atmospheres, 114(B01411):1-18, doi:10.1029/2008JB006008.
  • [50] Schenke, H. W. and Lemenkova, P. (2008). Zur Frage der Meeresboden-Kartographie: Die Nutzung von Auto-Trace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydrographische Nachrichten, 25(81)116-21, doi:10.6084/1119.figshare.7435538.v2.
  • [51] Schmidt, C, Sattarova, V. V., Katrynski, L., and Arbizu, P. M. (2019). New insights from the deep: Meiofauna in the Kuril-Kamchatka Trench and adjacent abyssal plain. Progress in Oceanography, 173:192-207, doi:10.1016/j.pocean.2019.02.010.
  • [52] Sen, A., Ondréas, H., Gaillot, A., Marcon, Y., Augustin, J. M., and Olu, K. (2016). The use of multibeam backscatter and bathymetry as a means of identifying faunal assemblages in a deep-sea cold seep. Deep-Sea Research Part I, 110:33-49, doi:10.1016/j.dsr.2016.01.005.
  • [53] Smith, W. H. F. and Sandwell, D. T. (1997a). Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277(5334):1956-1962, doi:10.1126/science.277.5334.1956.
  • [54] Smith, W. H. F. and Sandwell, D. T. (1997b). Marine gravity anomalies from GEOSAT and ERS-i satellite altimetry. Journal of Geophysical Research Atmospheres, 102(B5):10039-10054, doi:10.1029/96JB03223.
  • [55] Soloviev, S. L. (1968). Problem of tsunami and its significance for Kamchatka and Kuriles. The Problem of Tsunami. Nauka, Moscow, Russia, 2 edition.
  • [56] Soloviev, S. L. (1972). Recurrence of earthquakes and tsunamis in the Pacific. Proceedings SakhKNII, 29:7-47.
  • [57] Strick, R. J. P., Ashworth, P. J., Awcock, G., and Lewin, J. (2018). Morphology and spacing of river meander scrolls. Geomorphology, 310:57-68, doi:10.1016/j.geomorph.2018.03.005.
  • [58] Suetova, I. A., Ushakova, L. A., and Lemenkova, P. (2005). Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources, 4:138-142, doi:10.6084/m9.figshare.7435535.
  • [59] Tomaszewski, D., Rapinski, J., and Pelc-Mieczkowska, R. (2017). Concept of AHRS Algorithm Designed for Platform Independent IMU Attitude Alignment. Reports on Geodesy and Geoinformatics, 104:33-47, doi:10.1515/rgg-2017-0013.
  • [60] Tyler, P. A. (2002). Deep-sea eukaryote ecology of the semiisolated basins off Japan. Journal of Oceanography, 58:333-341, doi:10.1023/A:1015817910449.
  • [61] Vázquez, J. T., Alonso, B., Fernández-Puga, M., Gómez-Ballesteros, M., Iglesias, J., Palomino, D., Roque, C, Ercilla, G., and Diaz-del Río, V. (2015). Seamounts along the Iberian Continental Margins. Boletín Geológico y Minero, 126(2-3):483-514.
  • [62] Wessel, P. and Smith, W. H. F. (1996). A Global Self-consistent, Hierarchical, High-resolution Shoreline Database. Journal of Geophysical Research Atmospheres, 101:8741-8743, doi:10.1029/96JB00104.
  • [63] Wessel, P. and Smith, W. H. F. (1998). New version, of the Generic Mapping Tools released. EOS Transactions of the American Geophysical Union, 79(47)329, doi:10.1029/98EO00426.
  • [64] Wessel, P. and Smith, W. H. F. (2018). The Generic Mapping Tools. Version 4.5.18 Technical Reference and Cookbook. GMT, U.S.A.
  • [65] Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., and Wobbe, F. (2019). The Generic Mapping Tools. GMT Man Pages. Release 5.4.5. GMT, U.S.A.
  • [66] Yesson, C, Clark, M. R., Taylor, M. L., and Rogers, A. D. (2011). The global distribution of seamounts based on 30 arc seconds bathymetry data. Deep-Sea Research Part I, 58:442-453, doi:10.1016/j.dsr.2011.02.004.
  • [67] Zenkevich, L. (1963). Biology of the Seas of the USSR. Institute of Oceanology RAS Press, Moscow, Russia.
  • [68] Zhang, F., Lin, J., and Zhan, W. (2014). Variations in oceanic plate bending along the Mariana trench. Earth and Planetary Science Letters, 401:206-214, doi:10.1016/j.epsl.2014.05.032.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-923b3ab8-2692-4195-90f7-39b8a136ddb5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.